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tatistical mediation allows researchers to investigate potential causal effects of experi-
mental manipulations through intervening variables. It is a powerful tool for assessing the
presence and strength of postulated causal mechanisms. Although mediation is used in
certain areas of psychology, it is rarely applied in cognitive psychology and neuroscience. One
reason for the scarcity of applications is that these areas of psychology commonly employ
within-subjects designs, and mediation models for within-subjects data is considerably more
complicated than for between-subjects data. Here, we draw attention to the importance
and ubiquity of mediational hypotheses in within-subjects designs, and we present a general
and flexible software package for conducting Bayesian within-subjects mediation analyses in
the R programming environment. We use experimental data from cognitive psychology to
illustrate the benefits of within-subject mediation for theory testing and comparison.
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Many important questions in psychology concern a causal chain of relationships between
an initial cause and its effect through an intermediary process. One common method for
investigating such causal models, statistical mediation, assesses to what extent the effect of
an independent variable (IV) on a dependent variable (DV) is mediated by an intervening
variable M. Mediation is suitable for answering many questions about causal processes in
cognitive psychology and neuroscience, such as: “Do expectations alter brain activity, and
thereby change how individuals respond to stimuli?” (Atlas, Bolger, Lindquist, & Wager,
2010); and “Does cellphone use while driving cause traffic accidents by increasing drivers’
attentional demands?” (e.g. Ishigami & Klein, 2009). Mediation models are valuable because
they allow the evaluation of theoretical predictions about causal mechanisms, whether in
testing a single theory or in theory comparison.

Experiments in cognitive psychology, and related areas, often investigate moderational
hypotheses, by for example testing interaction effects in multi-way ANOVAs, but investiga-
tions of mediational hypotheses (see Baron & Kenny, 1986 for a discussion on the distinction
between mediating and moderating variables) in cognitive psychology are rare in comparison
to many other branches of psychology (Table 1 in MacKinnon, Fairchild, & Fritz, 2007). One
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Figure 1 . (#fig:template-mediation-plot)Diagram of the mediation model.

reason for the rarity of mediational hypotheses in this area may relate to the difficulties as-
sociated with appropriately analyzing mediation when the data consist of repeated measures
over individuals in within-subject designs—as is often the case in cognitive experiments.
One general, and increasingly common, strategy for analyzing repeated measures data and
within-subject designs is multilevel modeling, which postulates that the data are nested
within units, such as trial-level observations nested within individual participants. Over
the past decade, multilevel analysis has been successfully implemented to assess mediation
where data are repeatedly measured within individuals in different conditions, such as
many experiments in cognitive psychology and neuroscience. Here, we briefly introduce the
classic mediation model of Baron and Kenny (1986) and the multilevel modeling approach
to estimating mediation with repeated measures (Kenny, Kashy, & Bolger, 1998; Kenny,
Korchmaros, & Bolger, 2003). We then introduce an easy to use software package for
Bayesian estimation of multilevel mediation models in the R programming environment, and
illustrate its use with an example.

Mediation

In what follows, we discuss a mediation model where X is the hypothesized causal
variable, usually the IV in an experiment, Y is the measured outcome (the DV), and M a
measured variable which hypothetically mediates X’s effect on Y. We restrict our discussion
to cases where X and Y are either binary or continuous and M is continuous. We focus on,
and implement in the software presented below, this three variable mediation model because
of its wide applicability and suitability for data from cognitive psychology and neuroscience
experiments. This model is illustrated in Figure @ref(fig:template-mediation-plot).

The three causal paths in Figure @ref(fig:template-mediation-plot)—a, b, and c’,
corresponding to X’s effect on M, M’s effect on Y, and X’s effect on Y having taken M into
account, respectively—correspond to parameters from two regression models, one in which
M is the outcome and X the predictor, and one in which Y is the outcome and X and M the
simultaneous predictors. From these parameters, we can compute the mediation effect (the
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product ab; also known as the indirect effect), and the total effect of X on Y,

c = c′ + ab. (1)

Thus, the total causal effect of X, which is captured by the parameter c, can be
decomposed precisely into two components, a direct effect c’ and an indirect effect ab
(the product of the a and b paths). There is evidence of mediation when the uncertainty
interval (we later define this interval in more detail and distinguish Confidence and Credible
Intervals) for ab is sufficiently small that one can rule out zero as a likely population value.
There is evidence of complete mediation if the uncertainty interval for the direct component
c’ is narrow around zero. As in all conclusions from data, assertions of mediation are
probabilistic (and we caution users not to interpret the uncertainty intervals as hypothesis
tests). Furtheremore, the distinction between complete and partial mediation may not always
be useful, and researchers may instead want to focus on the magnitude of the mediation
effect (Shrout & Bolger, 2002).

To continue with the cellphone and traffic accident example, talking on a cellphone (X)
may increase the driver’s attentional or cognitive load (M; path a), which in turn may lead
to traffic accidents (Y; path b) (e.g. see Ishigami & Klein, 2009). If attentional or cognitive
demands completely explained the cellphone use → traffic accidents relationship, then the
mediation effect (ab) would be close in size to c, whereas the direct effect (c’) would be
close to zero. If attentional demands did not completely explain the relationship, c’ and its
associated uncertainty interval would also allow excluding zero as a plausible value. Viewed
in this light, the mediation model consists of a pair of regression models, and inference is
performed by interpreting the model’s estimated parameters and their transformations (ab,
c’, c; Baron & Kenny, 1986; Shrout & Bolger, 2002). Importantly, this logic can be extended
to multilevel regression models to analyze data with repeated measures (Kenny et al., 2003),
a task we turn to next.

Multilevel mediation model for repeated measures

Multilevel modeling (sometimes called hierarchical modeling, or linear mixed modeling)
is a general approach for treating non-independent observations, such as repeated measures
within individuals in psychological experiments. The key assumption in a multilevel model
is that the lower or trial level observations are nested within upper level units (individual
participants), and the general approach consists of estimating regression models where
parameters at each level are estimated simultaneously. In educational research, the upper
level units can be schools, and the lower level observations can be students within those
schools. In cognitive experiments, the upper level units are persons, and the lower-level
units are measured repeatedly over trials. Such data structures characterize many—if not
most—within-subject experiments in cognitive psychology, where each subject is repeatedly
exposed to each level of the treatment variable. For example, in the Stroop task (Stroop,
1935), subjects usually observe (multiple instances of) both congruently and incongruently
colored letters.

Within-subject designs and repeated measures have traditionally been analyzed with
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methods such as repeated measures AN(C)OVA. However, multilevel models have many
benefits over these methods, such as the ability to naturally account for unbalanced data
(unequal number of observations across individuals, groups, and conditions), the ability to
incorporate continuous and categorical variables, estimation of the variation in effects across
individuals, and the extent to which the effects covary in the population of individuals (see
e.g. Bolger & Laurenceau, 2013; Gelman & Hill, 2007; McElreath, 2016). For these and
other reasons, multilevel models have grown in popularity at a rapid pace.

Importantly, multilevel modeling is also applicable in mediation analysis when the data
consist of multiple measurements within individuals, allowing either some or all of the paths
to vary between individuals in the study. As in other types of data where measurements are
correlated (within-individuals, for example), ignoring this structure of the data can lead to
inaccurate standard errors and thereby lead to over- or underconfidence in one’s findings.
When each of the X, M, and Y variables are repeatedly measured within individuals, the
mediation model is commonly known as 1 → 1 → 1, or lower level mediation because each
variable is measured at the lowest level (level 1, trials, in contrast to level 2, the individuals;
Krull & MacKinnon, 2001; Kenny et al., 2003; Preacher, 2015). In the current work, we focus
on this model. Other multilevel mediation models include 2 → 1 → 1 mediation, where the
X variable does not vary at the lower level (Preacher, 2015; Raudenbush & Sampson, 1999),
and 2 → 2 → 1 mediation, where only the outcome variable (Y) is repeatedly measured
(Krull & MacKinnon, 2001).

After the topic was introduced (Kenny et al., 1998), multilevel mediation has been
attracted interest both in methodology development and application (Preacher, 2015). It
has been succesfully applied in 1 → 1 → 1 models (Kenny et al., 2003), multilevel models
with moderation (Bauer, Preacher, & Gil, 2006), but requires care in application, such as
considerations of within-cluster centering variables to isolate between- and within-subject
effects from each other (Zhang, Zyphur, & Preacher, 2009). Multilevel mediation has also
been extended to multilevel structural equation modeling (Preacher, Zyphur, & Zhang,
2010), but SEM approaches are outside of the scope of the current work.

Multilevel mediation equations. In this article, we consider a mediation model
applied to data where the independent variable is manipulated within individuals, and the
outcome and hypothesized mediating variables are measured on each trial. These data
then afford two levels of analysis: At the lower level are trial-level observations, which are
clustered within individual persons at the upper level. The following equations refer to (and
the software presented below requires) data sets structured in long format. That is, each
observation is on a separate row, and each variable has its own column. When an experiment
consists of multiple trials, then each row would represent a trial, and the different variables
measured (or manipulated) during the trials would be in their own columns. The example
data are presented in this format in Table @ref(tab:example1-data-table).

The multilevel mediation equations include both population- and subject-level param-
eters. The population-level parameters describe the distribution of the parameters in the
population, and are usually of key interest in the analysis. The means of these distributions
(sometimes known as “fixed effects”) describe the effects “for the average person” (Bolger
& Laurenceau, 2013), whereas their standard deviations (sometimes known as “random
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Figure 2 . (#fig:template-multilevel-mediation)Diagram of the within-subjects mediation
model.

effects”) describe the extent to which people differ from one another in the population. The
subject-level parameters are specific to the individuals in the current sample of subjects,
and are considered random draws from the population-level distribution. We avoid using
the terms “fixed” and “random” because they can be confusing, and are less meaningful in
the Bayesian context where all parameters are random in some sense (Gelman et al., 2013,
p. 383; Gelman & Hill, 2007, p. 245).

We denote the subject-level effects with the same letters as the population-level
effects but prepend them with u and append with the index variable j to specify that
they vary across units of j (the individual subjects; Figure @ref(fig:template-multilevel-
mediation))1. An important addition to the equations is the covariance of the subject-level
aj and bj parameters, illustrated on top of Figure @ref(fig:template-multilevel-mediation)
(and explained in further detail below).

In writing the model, we deviate from the common “error term” representation, where
the stochastic component of the model is added separately to indicate that the errors

1We refer to the subject-level parameters as effects, although they more accurately represent deviations of
the subject-level parameters from the population-level average effects. We use this nomenclature for two
reasons: First, we believe it is more straightforward and avoids an unimportant technicality. Second, although
we could have directly written the model so that the subject-level parameters are effects, not deviations
from the population-level effects, we found that the MCMC algorithms were more efficient when using the
parameterization presented here. Importantly, the subject-specific effects returned by the software (such as
those Figure @ref(fig:example1-subj-coefs)) are not deviations from the average effect, but instead have the
average effect added to them and can therefore be considered as the subject-specific effects.
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are normally distributed, and instead represent the models as probability distributions
themselves, an approach we think is more natural in the Bayesian context.

Analyzing the causal paths in Figure @ref(fig:template-multilevel-mediation) consists
of estimating two multilevel regression equations. For path a (X’s effect on M), we model
each observation of Mij (observation in row i for individual j; see Table 1) as a random draw
from a Gaussian distribution with mean µMij and standard deviation σM . Note that σM is
the standard deviation of the lower-level residual. The linear model is then represented as a
regression equation for µMij ,

Mij ∼ N(µMij , σ
2
M ) (2)

µMij = (dM + udMj
) + (a+ uaj )Xij . (3)

The first term in equation 3, dM , is the population-level intercept for M, and udMj
is

the subject-level intercept for subject j (see footnote 1). The M → Y and X → Y slopes
(paths b and c’) are captured by modeling Yij (observation of Y in row i for individual j;
see Table 1) as random draws from a Gaussian distribution with mean µYij and standard
deviation σY (which, again, is the lower-level residual of Y ).

Yij ∼ N(µYij , σ
2
Y ) (4)

µYij = (dY + udYj
) + (c′ + uc′

j
)Xij + (b+ ubj

)Mij . (5)

This regression predicts Y from the combination of population-level and subject-level
intercepts dY and udYj

, respectively; population and subject-level direct effects of X on Y
(c′ and uc′

j
); and population- and subject-level effects of M on Y (b and ubj

).

The multilevel nature of this model is captured by specifying the subject-level param-
eters as draws from a multivariate normal distribution with a 5 x 1 vector of means of zero
and a 5 x 5 covariance matrix Σ,


udMj

udYj

uaj

ubj

uc′
j

 ∼ N(0,Σ). (6)

Together, equations 2-6 constitute the multilevel mediation model. From the model’s
estimated parameters, we can calculate for each individual, and the population average, all
the additional parameters that are used to assess mediation, such as me (population-level
mediation effect; also known as indirect effect) or ume3 (mediation effect for person 3).
However, calculating the mediation effect, and therefore the total effect of X on Y (c)
for the multilevel model differs in important ways from the single-level (between-subject)
calculations (eqn. 1). To obtain the population-level mediation effect, we must add the
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covariance of aj and bj to the product of the population-level a and b (as shown by Kenny
et al., 2003, eqn. 9):

me = ab+ σajbj
. (7)

σajbj
, the covariance of aj and bj , is an element of the covariance matrix Σ, and

indicates the degree to which subjects with (say) greater values of aj are likely to have
greater values of bj (in the case where the covariance is positive). Tofighi et al. noted that this
covariance term can indicate an omitted variable that interacts with the a and b slopes, and
therefore including it in the model leads to a more general model that allows misspecification
of the model at the between subject level (Tofighi, West, & MacKinnon, 2013). These
authors suggested that researchers estimate the model both with and without this covariance
term (Tofighi et al., 2013, p. 301), but in our view it is more straightforward to allow this
parameter to be estimated from the data. Note, however, that researchers can effectively
force this parameter to be zero by specifying a prior on it that spikes at zero (see below), but
we don’t recommend this approach unless there is abundant prior information to suggest such
a model. This covariance is illustrated in Figure @ref(fig:template-multilevel-mediation),
with a double-headed arrow connecting aj and bj .

Finally, the population-level total effect of X on Y is given by

c = me+ c′. (8)

The software also allows estimating the same multilevel mediation model, but for a
binary Y variable (coded as 0s and 1s.) In this case, the model for Y (equations 4 & 5) is a
multilevel logistic regression:

Yij ∼ Bernoulli(µYij ) (9)

µYij = 1
1 + exp(−ηYij ) (10)

ηYij = (dY + udYj
) + (c′ + uc′

j
)Xij + (b+ ubj

)Mij . (11)

The Bernoulli distribution in equation 9 is the Binomial distribution for a single trial.

Alternatives to multilevel models

Although multilevel modeling is not the only approach to within-subject mediation,
we believe that in the types of experiments most commonly employed in cognitive psychology
and neuroscience, it is the most parsimonious and applicable mediation model.

A common alternative to multilevel modeling in within-subject mediation is longi-
tudinal modeling, where change processes within individuals are modelled to occur over
time (Cheong, MacKinnon, & Khoo, 2003; Cole & Maxwell, 2003; MacKinnon, 2008; Selig
& Preacher, 2009). While a tremendously valuable approach in many areas of psychology,
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longitudinal models are less relevant in cognitive psychology and neuroscience, because
experiments in these fields rarely track participants over time. Instead, experimental con-
ditions are usually randomised trial-wise (or block-wise), and the experiments usually are
less than an hour or two in duration, meaning that any possible change within individuals
occurs repeatedly over the course of the experiment (when conditions change across trials)
with no meaningful purely temporal pattern with respect to the causal effect.

Another method of addressing mediation in within-subject designs focuses on using
change scores between experimental conditions (Judd, Kenny, & McClelland, 2001; Montoya
& Hayes, 2017), a valuable approach for experiments where participants provide only two
measures. This method was recently advanced to include designs with control groups (Valente
& MacKinnon, 2017). While useful for e.g. pre-post-test designs, this method does not easily
address designs where the manipulated variable (X) continuous, or where participants are
measured more than twice.

While useful in many situations, these other approaches to within-subject mediation are
less practical and applicable than multilevel models in the context of cognitive psychology and
neuroscience experiments. Therefore, we have decided to focus and implement a multilevel
modeling approach to within-subject mediation.

Bayesian estimation

Traditional procedures of estimating (within-subject) mediation models have focused
on various frequentist methods, such as Ordinary Least Squares (OLS) and Maximum
Likelihood Estimation (MLE). We instead advocate—and implement in the software package
discussed below—Bayesian estimation, because it offers several advantages over these conven-
tional methods. The benefits include the natural incorporation of uncertainty in estimated
parameters in the form of a posterior distribution, and the probability interpretation afforded
by it; the ability to incorporate prior information in the statistical model; and a more natural
interpretation of multilevel models. We discuss these benefits below, then highlight some
similarities of the Bayesian method to classical procedures before briefly introducing the
precise method by which the Bayesian estimation is conducted in our programming package.

Traditional MLE methods for assessing (multilevel) regression models, such as those
described above, provide point estimates and standard errors of the estimated parameters,
which are in turn based on assumptions about the parameters’ sampling distributions, and
from which Confidence Intervals can be calculated. In contrast, Bayesian analyses provide,
for each parameter, full posterior probability distributions of plausible parameter values,
and therefore directly intepretable representations of uncertainty (Kruschke, 2014).

This fact is important when the investigation focuses on transformations of the
estimated parameters at multiple levels, such as equations 7 and 8, because the uncertainty in
the estimated parameters is conveniently carried forward to uncertainty in the transformations
of the estimated parameters, such as c, me and pme (at both levels) in the multilevel
mediation model. The posterior distributions can then be summarized by X% Credible
Intervals or displayed visually to effectively communicate the relative plausibilities of various
(transformed) parameter values. We believe the visual inspection of histograms and violin
plots (Figures @ref(fig:example1-pop-hist) and @ref(fig:example1-pop-violin)) can benefit
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inference by helping users focus on distributions of plausible values, instead of point estimates.
Visual inspection of the distribution of plausible values is especially important when the
underlying distribution may be non-Gaussian, such as for indirect effects (or pme) in
mediation, or when sample sizes are small.

Further, unlike the standard error given by MLE methods, the Bayesian posterior
distribution is a probability distribution and allows statements of relative probabilities of
parameter values. For instance, we often wish to discuss the plausibility of various parameter
values, and our subjective confidence in these values. The posterior distribution obtained
by a Bayesian analysis allows just that: Throughout this article we refer to “X% most
plausible values”, and “credible” parameter values. These statements can be made based on
summaries of the posterior distribution, such as the Credible Interval, which contains some
percentage of the central values of the distribution. Confidence Intervals based on more
common frequentist estimation methods (such as MLE) do not allow such statements of
plausibility or subjective confidence, although they are sometimes (wrongly) so interpreted
(Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2015).

The Bayesian framework also allows incorporating prior information in the statistical
model. When prior information on the magnitudes of parameters is available, it can be
naturally incorporated in the analysis, thus improving the estimates. This information can
come from expertise in the field of study, earlier studies, or knowledge about the natural
constraints in the data. For example, researchers are sometimes aware of limits beyond
which parameters are unlikely to be found; this information can be incorporated in the form
of a prior distribution which will decrease the variance of the estimate. Information used in
this manner is sometimes called a “regularizing” prior, and can be very useful especially in
contexts when the data are uninformative about the parameter (McElreath, 2016).

A related benefit of incorporating prior information into a statistical model relates
to the stability of the estimated parameters. A well-known problem with MLE methods in
the context of multilevel models is that point estimates of the between-person heterogeneity
parameters (often denoted τ , see equation 6) cannot be distinguished from zero, even though
the parameter’s likelihood function contains a considerable range of non-zero values. A
consequence of this is that with MLE the person-level parameters conditional on the zero
heterogeneity would be erroneously estimated as identical. This situation occurs especially
in applying generalized multilevel models, such as logistic regression. However, the Bayesian
analysis provides a distribution of values for the heterogeneity parameter, which consequently
is not “stuck” at zero and thus allows the subject-level parameters to vary. In these situations,
the data can be relatively uninformative about the actual value of the parameter, and the
posterior distribution may be unnecessarily wide.

In addition, when this happens, the Bayesian analysis allows including prior information
in the form of a heavy tailed distribution, such as Cauchy with appropriate hyperparameters
(Gelman, 2006). This information can then effectively regularize the inference toward more
realistic values, and thereby allow estimating the between-person heterogeneity parameter
even in situations where MLE methods fail and the data are relatively uninformative about
the underlying parameter values.
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Although the topic is beyond the scope of this article, prior information allows Bayesian
hypothesis testing in a straightforward manner using Bayes Factors. Bayes Factors can
be thought of as quantifying the “extent to which data cause revision in belief” (Kass &
Raftery, 1995; Rouder, Morey, Verhagen, Province, & Wagenmakers, 2016, p. 533) where
“belief” is the prior probability distribution. Furthermore, Bayes Factors can be fairly easily
estimated using MCMC samples (see below) using the Savage-Dickey density ratio method;
details are given by Wagenmakers et al. (2010).

Multilevel mediation is both conceptually and computationally significantly more
complicated than single-level mediation. One conceptual difficulty is in how the parameters
are interpreted at various levels of analysis: Classical methods consider the upper-level
parameters as “fixed”, and the lower-level parameters as “random”. This may not be a
fundamental problem, but at least presents difficulties in teaching and communication
(see footnote 2 in Gelman & Hill, 2007, p. 245 for an exposition of the problem; see also
Yuan & MacKinnon, 2009, p. 312). In the Bayesian context, in contrast, all estimated
quantities—irrespective of their level in the model’s hierarchy—are considered random. In
the context of the multilevel mediation model, the upper- or population-level parameters can
then be considered as empirically informed priors for the lower- or subject-level parameters
(equation 6; Gelman & Hill, 2007).

On the computational side, conventional methods are often more difficult to apply to
complex models, such as multilevel mediation (Kenny et al., 2003; Yuan & MacKinnon, 2009).
On the other hand, Bayesian methods allow for a relatively straightforward estimation,
especially when it is implemented with efficient MCMC methods (as discussed below).
Although out of the scope of this manuscript, the Bayesian method will easily fit more
complicated models with large numbers of covariates, levels of analysis, and parameter
transformations—even in situations where more traditional MLE methods may fail or be
too difficult to implement in practice.

Similarities of Frequentist and Bayesian Methods. Having detailed some
benefits of a Bayesian approach to estimating the multilevel model, is is also important
to be aware of some important similarities between results obtained with Bayesian and
more traditional MLE based methods. For one, when the sample size is very large, and the
sampling error correspondingly small, the point estimate of a parameter can be considered a
sufficient description of the posterior distribution (Gelman et al., 2013). However, in practice
sample sizes are rarely that large.

A more important similarity between classical and Bayesian methods is that if no prior
information is included (θ ∼ U(−∞,∞)), and the model estimation presents no problems,
the obtained intervals often have identical bounds. This fact has led some authors to suggest
that a classical confidence interval can sometimes be given a Bayesian interpretation (Gelman
et al., 2013, sec. 4.5). Notice, however, that we would rarely want to give a Bayesian interval
a frequentist interpretation.

Furthermore, under similar assumptions as given above, the frequentist one-sided
p-value corresponds to Bayesian posterior probabilities (that a parameter is greater or smaller
than a comparison value, such as zero.) (Marsman & Wagenmakers, 2016). However, the
probability interpretation naturally afforded to the Bayesian quantity seems to us to suggest
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its conceptual superiority, at least insofar as its interpretation does not immediately invite a
binary significant-or-not attitude (Gelman et al., 2013, p. 95). As a side note, the two-sided
p-value does not have a straightforward Bayesian counterpart.

We are not the first to suggest the use of Bayesian methods in mediation analyses:
Yuan and MacKinnon (Yuan & MacKinnon, 2009) discussed using it for single- and multi-
level mediation analyses, and provided copy-and-paste WinBUGS code for conducting the
analyses. Another paper discussed the use and benefits of Bayesian methods in the specific
context of moderated mediation (Wang & Preacher, 2015). To further these efforts, we
provide a fully functional software package for conducting Bayesian multi-level mediation
analyses in a common and free programming enviroment, using state of the art Bayesian
estimation procedures, which we turn to next.

MCMC and Stan. The computer program we provide and discuss below uses
Markov Chain Monte Carlo (MCMC) procedures as implemented in the Stan2 modeling
software (Stan Development Team, 2016b) to fit the multilevel mediation model. MCMC
is a class of computational procedures that allow approximating a probability distribution
by drawing random samples from it (for an excellent introduction to MCMC, see van
Ravenzwaaij, Cassey, & Brown, 2016). This technique is extremely valuable for Bayesian
inference, because complex multidimensional posterior distributions are often difficult or
impossible to obtain with analytic calculations.

Stan’s effective MCMC algorithms (No-U-Turn Sampler, Hamiltonian Monte Carlo;
Hoffman & Gelman, 2014) are well suited for the problems presented in multilevel mediation
models, such as large numbers (potentially hundreds or thousands) of parameters at multiple
levels. Unlike early popular MCMC algorithms that relied on Gibbs sampling (BUGS, JAGS),
Stan’s Hamiltonian Monte Carlo is very effective even when the posterior distributions are
highly correlated, making it especially useful for path analyses—such as mediation—and
other more complex structural models.

Furthermore, the Stan language allows placing priors on correlation matrices and
standard deviations, instead of (co)variances, making (arguably) the prior specification
easier, as discussed next.

Prior distributions on parameters. For Bayesian analysis, all population-level
parameters must also be assigned prior distributions that represent the analyst’s state of
knowledge and uncertainty, before seeing the data. The priors depend on the specifics of the
data and context, and should be chosen by the researcher—although the priors often have
little influence on the posterior distribution as the amount of data increases. The software
package we introduce below has default values for the priors that we believe are reasonable,
minimally informative priors in most contexts.

For the regression parameters, the prior distributions are zero-centered Gaussians, with
user-defined standard deviations (defaults to 1000). Effectively, a zero-centered Gaussian with
a small standard deviation “regularizes” (makes large positive or negative parameter values
less plausible, a priori) the estimated parameters, thereby improving inference on average by
preventing over-fitting (McElreath, 2016). A more technical definition of what constitutes
a “small” standard deviation depends on the theoretical context and measurement scale,

2http://mc-stan.org/.

http://mc-stan.org/
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but for large amounts of data, the values must be very small indeed to make a meaningful
difference in the posterior. The default value of 1000 will have practically no impact on
inference for data sets where effects are on the range of z-scores. If greater effects are
plausible (say, a manipulation has an effect on the order of thousands of milliseconds), users
may increase the value. The σ = 1000 we have placed on the population-level regression
parameters considers values further away from zero as increasingly unlikely, such that 95%
of the a priori most plausible values are between -1960 and 1960.

The second class of prior distributions relates to the variances and covariances of the
subject-level effects. To allow placing priors directly on standard deviations and correlations,
we construct the covariance matrix Σ from a vector of standard deviations τ and a correlation
matrix Ω (Stan Development Team, 2016b). We use folded Cauchy distributions with user-
defined scale parameters (defaults to 50) for the subject-level effects’ standard deviations
(Gelman, 2006; Gelman & Hill, 2007). The Cauchy distribution is recommended for these
parameters over alternatives, such as inverse-gamma or uniform distributions, especially
when the number of clusters (subjects) is very small (Gelman, 2006). Specifically, the
hyperparameters of inverse-gamma prior distributions may be more difficult to specify when
minimally or non-informative priors are desired, and uniform prior distributions may lead to
overestimation of τ . The folded (positive-only) Cauchy distributions concern the variability
of the effects between subjects: The default scale = 50 implies that increasingly large values
of variation (standard deviation of their respective Gaussian distributions) between subjects
are increasingly unlikely, such that a priori 50% of the most plausible values are under 50,
and 95% are under 1272.

For the correlation matrix Ω, we use an LKJ prior with a user-defined shape parameter
ν (defaults to 1) (Lewandowski, Kurowicka, & Joe, 2009; Stan Development Team, 2016b).
With older MCMC sampling programs relying on Gibbs sampling, such as BUGS and JAGS,
it was more convenient to use conjugate inverse Wishart distributions as priors on the
covariance matrices. However, Stan doesn’t require conjugacy for multivariate priors, and it
is often easier to think of plausible correlations rather than covariances, and we therefore
use the LKJ prior distribution on Ω.

The default hyperparameter value for the LKJ prior (ν = 1) assigns equal plausibility
across the range of possible values (-1 to 1), and values of ν greater than 1 increase the a
priori skepticism of large correlations (McElreath, 2016, p. 393). Because this distribution
is relatively unknown and difficult to conceptualize (it is a distribution of matrices), Figure
@ref(fig:lkj-prior-example) shows four sets of random draws from LKJ distributions with
different values of ν (McElreath, 2016).

For general information on the choice of prior distributions, we refer the readers to
excellent textbooks on Bayesian statistics (Gelman, 2006; Gelman et al., 2013; Kruschke,
2014; McElreath, 2016). However, if users wish to estimate models without prior information,
they can specify very large standard deviations to the Gaussian prior distributions and large
scale parameters to the subject-level effects’ standard deviations (Kruschke, 2014). Overall,
we chose default values for the prior distributions which would have minimal impact on the
resulting posterior distributions, given common ranges of data values and effect sizes. The
default priors are easy to change by simply passing named arguments to the estimation
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Correlation
Figure 3 . (#fig:lkj-prior-example)Histograms of 100000 random draws from the LKJ prior
distribution for four values of ν.

function (as detailed below).

Software package for Bayesian multilevel mediation: bmlm

We developed a free open-source software package (“bmlm” for Bayesian Multi-Level
Mediation) for the R programming language (R Core Team, 2016) for easy estimation,
summarizing, and plotting the results of the multilevel mediation model presented above
(Vuorre, 2016). The software can be installed from within the R environment (source
code, detailed installation and use instructions are provided online at the package’s website
https://github.com/mvuorre/bmlm). To install the software package, please ensure that you
have the latest versions of R and Xcode with command line tools (OS X users) or Rtools
(Windows users). Then run the following command in the R console (the installation process
may take a few minutes, because the models are compiled to C++ during installation):
install.packages("bmlm")

After the package has been installed, it must be loaded to the current R workspace to
make the functions contained in it available to the user.
library(bmlm)

Next, we illustrate the functionality and use of bmlm with an empirical example.

Example: Judgments of performance in a video game task

In a series of experiments, Metcalfe and colleagues have examined the informational
bases of people’s judgments of control; that is, to what extent various experimental manipu-
lations in a computer game task influence people’s experiences of control (Metcalfe & Greene,
2007). In these experiments, participants play an arcade style computer game, in which they
use the computer mouse to move a game cursor (a light square) horizontally on the bottom
of the screen, while Xs and Os fall from top to bottom of the screen. The objective of the
game is to catch as many falling Xs as possible, while avoiding all the falling Os. After each
game trial (about 20 seconds), the participants provide a judgment of their experienced
control using an analog slider scale. These ratings have been found to be highly sensitive
to various manipulations of the game, such as artificially introduced spatial and temporal

https://github.com/mvuorre/bmlm
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discrepancies between the mouse and square movements, and the speed of the falling Xs and
Os (Metcalfe, Eich, & Castel, 2010; Vuorre & Metcalfe, 2016). Additionally, the participants
have provided Judgments of Performance (JoP), their subjective evaluations of how well
they did in the game on each trial, by using an analog slider scale. Here, we focus on how
these JoPs are influenced by a specific experimental manipulation in this computer game
task.

One experiment introduced, on some trials, a small temporal lag (250ms) between
the participant’s mouse movements, and the movements of the game cursor on the screen
(Metcalfe et al., 2010, Experiment 1). This manipulation led to a reliable decrement
in the players’ ratings of performance. In the analysis below we ask: “How does the
temporal lag between one’s mouse movements, and the movements of the game cursor,
decrease ratings of performance?” To answer this question, we propose a straightforward
mediational explanation: The temporal lag decreases performance (as measured by hit rate,
the percentage of Xs caught in a trial), and people’s Judgments of Performance depend on
their hit rates. In other words, we expect that hit rate (performance) completely mediates
temporal lag’s effect on judgments of performance. This hypothesis implies that people are
making metacognitively accurate judgments of performance, by basing their performance
judgments on an actual performance signal (hit rate), rather than, say, a general feeling of
abnormally delayed mouse control.

Data set

Multilevel models assume that the observed variables have at least two potential levels
of variation. Because temporal lag was experimentally manipulated within subjects, it does
not vary between subjects. On the other hand, hit rates (HR) vary both between and within
participants: At the lower (within-person) level, HR varies from trial to trial. At the upper
level, we may also expect that HR varies, on average, between participants. We are most
interested in the within-person process, and therefore it is useful to transform the variables
such that these two levels are explicitly separated from each other (Bolger & Laurenceau,
2013). Notice that this transformation is not strictly required, but this reasoning suggests
that it is often useful and meaningful in data sets where the predictor values vary both
between and within subjects. We first averaged the grand-mean-centered trial-level HR for
each person to create a between-person component of HR. We subtracted these means from
the raw HR to create within-subject trial-by-trial deviations from the subject-means that
represent an entirely within-person version of HR. Isolating the within-person process from
variables can be done by using bmlm’s isolate() function:
MEC2010 <- isolate(d = MEC2010,

by = "subj",
value = "hr")

The isolate() function takes three arguments. On the first row, we specify the data
set to be MEC2010, which contains data described in (Metcalfe et al., 2010) and is included
with the bmlm package. The next line specifies the column containing values to isolate
the within- and between person processes by (the subject numbers). Finally, the third line
identifies the variable to be isolated. After this transformation, the example data frame is
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Table 1
First six rows of the example data
set.
subj lag hr jop hr_cw
1 1 36.7 30 -23.3
1 1 50.0 80 -10.0
1 0 56.7 90 -3.3
1 1 56.7 32 -3.3
1 1 56.7 50 -3.3
1 0 70.0 76 10.0

Note. Variables with "_cw" are
centered within-person.

ready, and can be seen in Table @ref(tab:example1-data-table).

Table @ref(tab:example1-data-table) illustrates the structure and variables of the
example data set. Each participant (43 individuals) is assigned a unique id number (subj);
the two experimental conditions are represented by a dichotomous indicator variable, where
1 indicates a lag trial (lag); hr is the raw percent of Xs caught in a trial; and jop is the
judgment of performance (from low [1] to high [100]). Finally, hr_cw is the isolated within-
subject component of hit rate. All the variables must be numeric; if the experiment contained
two conditions, as in the example here, the conditions would need to be dummy coded with
integers. The data set contains 8 observations per individual, 4 in the lag condition, and 4
in a control condition. Eight observations per person may seem a prohibitively small sample,
but because the multilevel model pools uncertainty across subjects, we are able to estimate
the within-subject causal process with these data, as shown below.

Estimating the multilevel mediation model with bmlm

To estimate the multilevel mediation model with bmlm, users need to specify the
data (an R data frame) in the current R environment, and variables within the data frame
identifying individuals, and the X, M, and Y variables. Here, MEC2010 is our data frame,
subj the column identifying individuals, and lag, hr_cw and jop the X, M, and Y variables,
respectively. These variables are entered into a call to the mlm() function, which estimates
the model using Stan’s MCMC algorithms (Stan Development Team, 2016b).
fit <- mlm(d = MEC2010,

id = "subj",
x = "lag",
m = "hr_cw",
y = "jop",
iter = 2000, cores = 4)

This function has two other important features, the control of prior distributions
and various controls of the underlying Stan MCMC procedures. As is usual in R, more
information can be found by entering ?mlm in the R console. Although the software package
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Table 2
Summary of results.
Parameter Mean SE Median 2.5% 97.5% n_eff Rhat
a -35.53 1.28 -35.51 -38.06 -33.06 4,413 1.00
b 0.94 0.07 0.94 0.81 1.09 3,698 1.00
cp -0.54 2.81 -0.58 -6.08 4.96 3,817 1.00
me -33.62 2.82 -33.61 -39.22 -28.25 3,698 1.00
c -34.16 2.32 -34.16 -38.78 -29.61 3,919 1.00
pme 0.99 0.08 0.98 0.83 1.15 3,953 1.00

Note. SE (for Standard Error) is the posterior standard deviation.

sets default priors, users may also input arguments identifying the prior parameters they
would like to change (see the documentation included with the software package, or the
package’s website, for details). Users may also control the behavior of the underlying MCMC
sampler; here, to ensure stable results we increased the number of iterations from the default
of 2,000 to 10,000, and ran the program simultaneously on 4 CPU cores.

Depending on the size of the data set and your computer, the MCMC sampling
may take from a few seconds to several minutes. By default, mlm() runs 4 MCMC chains,
and uses the first half of each chain for warmup (Stan Development Team, 2016b). The
iter argument specifies the total number of iterations per chain, so this example results
in 20,000 samples (4 x 10,000 / 2) from the model’s posterior distribution. During and
after sampling from the posterior distribution, Stan will print progress information in the R
console. Occasionally, these prints may include warnings about abnormal parameter values,
but these are usually not a cause for worry but simply a part of the random MCMC sampling
procedure. After the procedure ends, and the model has been estimated (the desired number
of posterior samples have been obtained), the estimated parameters can be summarized
using bmlm’s functions.

Summarizing the multilevel mediation model

Population-level estimates. We first focus on the population-level parameters of
the multilevel model. These estimates describe the results of the mediation analysis for
the average person, and are often the parameters of greatest interest. Users may print the
model’s focal estimated parameters directly to the R console by running mlm_summary(fit),
where fit is the R object containing the estimated model:

The output in Table @ref(tab:example1-summary) consists of the main population-level
parameters of the mediation model. The names correspond to the parameters introduced
in Figures @ref(fig:template-mediation-plot) and @ref(fig:template-multilevel-mediation),
and equations 2-8 (cp is c’, pme is proportion of effect that is mediated [see below]). For
each parameter, the output shows the posterior mean, standard deviation (abbreviated SE
for standard error), and median (which may be a more representative point estimate for
skewed posterior distributions.) “2.5%” and “97.5%” are the lower and upper limits of a 95%
Credible Interval, which is the central 95% of the corresponding distribution. The limits
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Table 3
Standard deviations of the regression parameters, and their covariance
(and correlation).
Parameter Mean SE Median 2.5% 97.5% n_eff Rhat
tau_a 1.69 1.30 1.42 0.07 5.00 1,304 1.00
tau_b 0.19 0.08 0.19 0.03 0.33 543 1.01
tau_cp 4.40 2.89 4.01 0.23 10.56 1,044 1.00
covab -0.07 0.18 -0.03 -0.55 0.17 2,366 1.00
corrab -0.16 0.39 -0.19 -0.82 0.63 3,860 1.00

of the CI can be controlled by specifying the level argument of this function, e.g. an 80%
CI would be obtained with level = .8. n_eff indicates the number of effective posterior
samples, taking into account the MCMC chains’ autocorrelation; this value should be large
to allow confident estimates of the quantities. Finally, Rhat is the potential scale reduction
factor, and should be 1.00 for accurate estimates of the posterior distribution (Gelman et
al., 2013, pp. 285–288). If n_eff is too small, or Rhat not 1.00, simply increase the number
of MCMC iterations and re-estimate the model using mlm(). We recommend to increase the
number of iterations until Rhat is within .05 of 1, and although Gelman et al. (2013) suggest
that n_eff greater than 10 or 100 is acceptable, in practice when extreme quantiles (such as
95% CIs) are of interest, we recommend increasing iterations until n_eff > 100 (at least).

First, we interpret the total effect of temporal lag on judgments of performance (c,
equation 8). 95% of the most plausible values of this parameter lie in the interval between
-39 and -30, and the mean value of the posterior distribution is -34. Therefore, people gave
about 34 points lower ratings of performance (on a scale from 1 to 100) in the lag condition
versus the control condition, with 95% of the most plausible values ranging from -39 to -30.
Our mediation hypothesis was that this effect would be mediated by hit rate. Therefore, we
next focus on the magnitude of the mediation effect, the me parameter (equation 7). In
support of our conjecture, me appears very strong, and of approximately equal magnitude
to the total effect c. 95% of most plausible values of me lie between -39 and -28, and the
mean value is -34. Further, after taking the hit rates into account, the direct effect of lag is
approximately zero and has a narrow credibility interval (cp = -0.54, 95% CI [-6.08, 4.96]),
indicating that the lag → JoP relationship is completely mediated by hit rate.

Multilevel models also naturally estimate the between-subject variability around the
population-level estimates, and the covariance of the subject-level parameters (i.e. the
so-called random effects). The variability is captured in the standard deviations of the
subject-level effects (see eqn. 6 and Prior distributions on parameters above). These
estimates are useful summaries of the heterogeneity and covariance of effects, and can be
obtained from the model by calling mlm_summary(fit, pars = "random")):

For instance, tau_a in Table @ref(tab:random-effect-table) is the estimated standard
deviation of the lag→ hit rate relationship in the population. Because posterior distributions
of standard deviations tend to be non-normal, instead of a point estimate (the posterior mean
or median) we focus on the 95% CI: 95% of the most plausible values of tau_a are between
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Figure 4 . (#fig:example1-path-plot)Path diagram with point estimates (posterior means) of
the parameters and associated 95 percent Credible Intervals (in square brackets below the
point estimates). Under each estimated average effect, “SD” shows the associated effect’s
standard deviation, which indicates the degree to which that effect varies between people
(in standard deviation units).

0.07 and 5. In context of an a effect of -35, the between-subject variation of this effect is very
small. To obtain summaries of other parameters in the model, such as subject-specific effects,
users need to enter the names of the parameters to the pars argument of mlm_summary().

Visualizing the estimated parameters

bmlm offers quick access to summary plots from estimated models. To draw a path
diagram with the variable names, and estimated path parameters as means and X% CIs
(default 95%), use mlm_path_plot().
mlm_path_plot(fit, xlab = "Lag", mlab = "Hit Rate", ylab = "JoP")

Second, although the path plot affords a rapid visual display of the main conclusions
of the model, it is often more informative to plot the parameters themselves. bmlm
offers three default plots of the parameters, illustrated below. To access these figures,
use the mlm_pars_plot() function. This function draws histograms, violin plots, or point
estimates with CIs, of the estimated parameters. The type of the plot can be specified
by setting the type = X argument to this function call, where X is either "hist" (Figure
@ref(fig:example1-pop-hist)), “violin” (Figure @ref(fig:example1-pop-violin)), or “coef”
(Figure @ref(fig:example1-subj-coefs)).
mlm_pars_plot(fit,

type = "hist",
pars = c("tau_a", "tau_b", "covab"), # Which parameters
nrow = 1) # Number of rows for multiple histograms
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Figure 5 . (#fig:example1-pop-hist)Histograms of the marginal posterior distributions of the
standard deviations of a and b (left, middle), and the a-b covariance (right). Quick visual
inspection tells us that these distributions are unlikely to be Gaussian, and therefore using
the distributions’ means or standard deviations as numerical summaries may be misleading.
It is better to interpret the entire distribution.

We prefer displaying the main parameters of interest as “violin” plots (also known as
“cat’s eye” plots, Figure @ref(fig:example1-pop-violin)). These offer a view of the distributions
such that the width of the shape is proportional to the frequency of those values. In other
words, the “violins” are filled density curved turned sideways and mirrored. The violin
shapes in Figure @ref(fig:example1-pop-violin) illustrate that the most plausible values of cp
(population-level direct effect of lag on JoPs), for example, are found near zero, and offer a
visual depiction of the relative credibility (width of violin) of the parameter values (y axis).
The extremely thin tails of cp beyond about ±5 indicate that these values are implausible.
The code snippet below also illustrates that the object returned by mlm_pars_plot() is
a ggplot2 object, and can be further customized by functions in the ggplot2 R package
(Wickham, 2016). Here, we specify the y axis breaks to run from -50 to 10 in increments of
five.
mlm_pars_plot(fit,

type = "violin",
pars = c("a", "cp", "c", "me")) +

scale_y_continuous(breaks = seq(-50, 10, 5))

Unlike more familiar point-and-error-bar representations of uncertainty, violin plots
put visual emphasis on the relative plausibility of values within the distribution itself, and
may therefore allow a more efficient display of information.

Subject-level estimates. The multilevel model provides, for each person, their own
mediation model with empirical Bayes estimates of the parameters. Numerical representations
of these values would quickly overwhelm us, but a graphical representation of the subject-level
parameter values offers valuable insight about the between-subject variability in the estimated
effects. For example, the subject-specific values of me show relatively little variation, and
indicate that the mediation effect is present for each individual person. To obtain subject-
specific parameters, simply call the function with the parameter name prepended with “u_”.
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Figure 6 . (#fig:example1-pop-violin)Violin plots of the estimated parameters. Each dark
violin shape is a mirrored top-down view of a density plot.

(We again specify the y axis breaks as in the Figure @ref(fig:example1-pop-violin).)
mlm_pars_plot(fit,

type = "coef",
pars = c("u_me", "me"),
level = .80) +

scale_y_continuous(breaks = seq(-50, 10, 5))

Figure @ref(fig:example1-subj-coefs) displays the subject-level (black) and population-
level (red) estimates of me, the mediation effect, and shows that while there is some variation
in the subject-specific effects, there appears to be a strong mediation effect (indirect effect)
for every person.

Mediation with binary outcomes

Binary outcomes are common in cognitive psychology, such as in learning and memory
experiments where the Y variable may be a binary indicator for a correct / incorrect or
remembered / not remembered response. bmlm allows estimating the multilevel mediation
model with binary outcomes, and assumes that the outcome variable is coded as 0s and 1s.

To illustrate how to estimate the model with a binary outcome variable, we created
a binary (0/1) outcome variable in the current example data by within-person-median
splitting the original outcome variable (Table @ref(tab:example-2-prep)). Some authors also
recommend standardizing the M variable (MacKinnon & Dwyer, 1993; Winship & Mare,
1983), but we omit standardizing M here for simplicity.

Because Y is now binary, we must specify binary_y = TRUE when using mlm() to
estimate the model. We also take the opportunity here to illustrate how to adjust the prior



WITHIN-SUBJECT MEDIATION 21

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Figure 7 . (#fig:example1-subj-coefs)Coefficient plot of the person-level estimates of the
mediation effect. Each square represents the mean of an individual’s estimated ab parameter,
and the lines cover the 80% CI of the parameters. By adjusting the “pars” argument, we
also include the average level estimate, which is automatically displayed in red.

Table 4
Example data with a binary Y variable.
subj lag hr jop hr_cw jop_bin
1 1 36.67 30 -23.33 0
1 1 50.00 80 -10.00 1
1 0 56.67 90 -3.33 1
1 1 56.67 32 -3.33 0
1 1 56.67 50 -3.33 0
1 0 70.00 76 10.00 1

Note. jop_bin is a within-person median split
version of the original jop variable.
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scale parameters when estimating the model. We assign the b parameter’s Gaussian prior
distribution’s SD to 1. This (somewhat arbitrary) prior assumption means that our prior
knowledge about b is described by a Gaussian distribution centered on zero with a standard
deviation of 1. For example, if the estimated parameter was exactly 1, then the effect of
one unit of hr_cw on the log-odds of jop_bin was 1; a rather implausibly large effect. In
effect, this prior then a priori constrains plausible parameter values to be closer to zero as
described by the N(0, 1) distribution.
fit_bin <- mlm(d = MEC2010,

id = "subj",
x = "lag",
m = "hr_cw",
y = "jop_bin",
binary_y = TRUE,
priors = list(b = 1),
cores = 4)

The estimated model is now in an R object called fit_bin. All the summarizing
and plotting functions illustrated above can be used with the binary Y model as well.
However, all the model’s coefficients that refer to Y (and their transformations, such as
the mediation effect) are products of a linear regression coefficient (path a), and a logistic
regression coefficient (path b). These values are usually difficult to interpret, and we therefore
recommend users to visualize the fitted values of the model.

Visualizing the model’s fitted values

A helpful function for visualizing the fitted values is mlm_spaghetti_plot(), which is
used to draw “spaghetti” plots that show fitted values at the population- and subject-levels.
Spaghetti plots make the relationships between the variables particularly salient, by plotting
the model’s fitted values in the data space (i.e. the b path is plotted in probability space).
We illustrate how to use this function below:
mlm_spaghetti_plot(

mod = fit_bin,
d = MEC2010,
x = "lag", m = "hr_cw", y = "jop_bin", id = "subj",
fixed = TRUE, random = FALSE, binary_y = TRUE, n = 20)

The input arguments to mlm_spaghetti_plot() are the model (mod), the data frame
used to fit the model (d), and the X, M, Y, and id variable names (as they are in the data).
Further arguments allow the user to decide to visualize the population-level effects (fixed),
subject-specific effects (random), or both. Finally, we also specified that the model has
a binary outcome variable binary_y = TRUE, and ensured that the lines look smooth by
specifying that the fitted lines should be evaluated along 20 points on the x-axis (n = 20).

The resulting figure (Figure @ref(fig:spaghetti-plot-binary-y)) is especially useful for
understanding the model when Y is binary, because the estimated parameters referring to Y
are in log-odds, and the mediation effect is a product of a linear coefficient and a log-odds
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Figure 8 . (#fig:spaghetti-plot-binary-y)Fitted values of the multilevel mediation model with
a binary Y. Left panel: Population-level regression line for path a and its 95%CI as a grey
shade. Right panel: Population level regression line for path b in probability space, and its
95%CI.

coefficient. This visualization is directly interpretable because the slope of the b path is
shown in probability space, and visualized such that the x-axis values are the fitted values of
M from the a path regression, and thus carry the effect size of the a path to plausible effects
of the b path. Finally, the gray shades surrounding the regression lines in both panels of the
figure are by default 95% Credibility Intervals, but the percentage can be adjusted with the
level argument of mlm_spaghetti_plot().

The same function can also be used to display regression lines of the a and b paths
for every individual in the study by setting the function’s argument random = TRUE. Figure
@ref(fig:spaghetti-plot-b-binary-y) shows the resulting “spaghetti” plot. These figures are
especially helpful in illustrating the heterogeneity of effects among participants, which in
this study was very small.

Estimating the magnitude of mediation

While me and c’ together provide information on the magnitude of the population-level
mediation and direct effects, respectively, another approach to assessing the magnitude of
mediation is to calculate the proportion of the total effect that is mediated, me

c (MacKinnon
et al., 2007; MacKinnon, Warsi, & Dwyer, 1995; Shrout & Bolger, 2002).

Because the Bayesian framework provides a full multivariate posterior distribution,
obtaining the posterior distribution of me

c is straightforward. This quantity is saved in
the estimated model as pme, for proportion mediation effect (or “proportion of effect that
is mediated”). The resulting marginal posterior distribution from the current example is
illustrated in Figure @ref(fig:example1-pme-plot). It is important to note that interpreting
pme is straightforward only if the mediated and direct effects are of the same sign (Shrout
& Bolger, 2002). For this, and other reasons, estimated values of pme may exceed 1 or be
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Figure 9 . (#fig:spaghetti-plot-b-binary-y)Fitted values of the multilevel mediation model
with a binary Y, for every individual in the study. Left panel: Subject-specific regression
lines for path a. Right panel: Subject-specific fitted values for path b in probability space.

pme
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Figure 10 . (#fig:example1-pme-plot)MCMC samples from the posterior distribution of the
population-level proportion of effect that is mediated.
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negative, and therefore do not represent a true proportion. We recommend interpreting
values greater than 1 as 1. Although the usefulness of this metric can be disputed because it
does not represent a true proportion, it can sometimes be useful—especially as a quick and
rough estimate of the importance of the mediated effect—and we include it in the model’s
output, but remind researchers to be cautious when interpreting it. Keeping this in mind,
the posterior distribution of pme in Figure @ref(fig:example1-pme-plot) suggests that most
plausible values are very close to 1, again reinforcing our conclusion of total mediation of
lag’s effect on judgments of performance through hit rates.

Other effect size measures for mediated effects have also been proposed, such as κ2,
which is a standardized effect size denoting the “proportion of the maximum possible indirect
effect that could have occurred, had the constituent effects been as large as the design and
data permitted” (Preacher & Kelley, 2011, p. 106). However, the usefulness and definition
of the κ2 metric has been contested for a number of reasons, including that it can decrease
even though the underlying mediation effect increases (Wen & Fan, 2015).

Furthermore, non-standardized effect sizes are often easier to interpret, and as such can
be more informative about the measures used in the experiment (Baguley, 2009). Therefore,
we recommend describing the results of multilevel mediation analyses using unstandardized
effect sizes such as the coefficients a, b, c’, and their transformations such as me. This
recommendation echoes Tukey’s note that “being so disinterested in our variables that we
do not care about their units can hardly be desirable.” (Tukey, 1969, p. 89).

In the case of a binary Y variable, the regression coefficients b and c’ are more difficult
to interpret directly, because they report unstandardized effect sizes in the log-odds scale.
Consequently, the mediated effect me is a product of a linear effect on the data scale (a),
and a linear effect on the log-odds scale (b). However, this complication reflects the fact
that mediation effects are inherently combinations of many variables, and there may not be
a single metric that adequately captures the mediation effect size in all situations (Wen &
Fan, 2015).

Consequently, we recommend reporting not only the mediated effect me, but its
constituent parts a and b as well (and covariance σajbj

, if it is important in the current
analysis). If the a and b paths are of the same sign, the proportion of the total effect that
is mediated, me

c , should also be reported. Because the Bayesian analysis automatically
provides posterior distributions of these parameters, inference (and communication) should
not focus on point estimates, but their associated uncertainty intervals should also be
reported. Additionally, the communication and interpretation of mediation analyses is
greatly facilitated by graphical descriptions of the data and estimated model, such as Figures
@ref(fig:spaghetti-plot-binary-y) and @ref(fig:spaghetti-plot-b-binary-y). We have specifically
designed bmlm’s plotting functions to facilitate the interpretation and communication of
results.

Summary of bmlm’s functions

Above, we have illustrated the functionality of bmlm with an empirical example.
Table @ref(tab:function-reference-table) provides a quick reference table to its main functions.
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Table 5
Main functions of bmlm.
Function Purpose Inputs
isolate() Create within-person variables Data, variable names
mlm() Estimate a multilevel model Data, variable names, MCMC options
mlm_summary() Print parameters to R console Model, parameters, credibility level
mlm_pars_plot() Plot mediation model’s parameters Model, plot type, parameters
mlm_path_plot() Plot the model as a path diagram Model, variable names
mlm_spaghetti_plot() Plot fitted values (regression line) Model, data, variable names
tab2doc() Create a Word summary document Results of mlm_summary()

Note. To learn more about each function, type the function’s name prepended with a question mark in
the R console. This will bring out the function’s help page.

Discussion

Comparison to other software

Software options for implementing multilevel mediation are limited, and to date have
been limited to commercial software. Bolger & Laurenceau (2013) used Mplus (Muthén &
Muthén, 2017) to estimate a 1 → 1 → 1 multilevel mediation with continuous Y, and here
we provide a summary table comparing estimated parameters from bmlm and Mplus for
the example discussed in Bolger & Laurenceau (2013). (This data set is included in bmlm
as BLch9.)

Table @ref(tab:comparing-software-table) shows that the point estimates, and their
standard errors (for bmlm these are posterior means and standard deviations), obtained
from bmlm and Mplus are in agreement, and numerical differences are small. However, it
is important to emphasize that only focusing on the point estimate and SE of some of the
estimated parameters can be less informative than viewing the full posterior distribution,
because the shape of the distribution can be very non-Gaussian, in which case these two
numbers may be misleading. For example, Figure @ref(fig:example1-pop-hist) shows that
the posterior distributions of standard deviation and covariance parameters characterizing
the random effects may be very skewed; summarizing these with just a mean and SD may
lead to inaccurate inferences. In summary, numerical results from bmlm are the same as
would be obtained using commercial software (Mplus).

Why, then, should researchers choose to use bmlm over the more general Mplus
software? First, on our reading, the Mplus software—and its modeling language—is not well
known or commonly used within cognitive psychology and neuroscience. The R software, is
well known within these fields, and because at its core bmlm is only a library of R functions,
users who are familiar with R can estimate the model within minutes of installation. A
second benefit of using the comparably more limited bmlm has to do with the fact that
it is emphatically not a general purpose (structural equation) modeling tool; it does few
things, but it does them well. For example, the figures illustrated above are very useful
in interpreting and communicating results from the analysis, and are available to users by
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Table 6
Comparison of parameters estimated with bmlm and Mplus, from a model using
example data presented in Bolger and Laurenceau (2013), chapter 9. The bmlm
estimates are posterior means, and SEs are posterior standard deviations (based
on 100,000 MCMC samples).
Parameter Estimate (bmlm) Estimate (Mplus) SE (bmlm) SE (Mplus)
a 0.19 0.19 0.04 0.04
b 0.15 0.15 0.03 0.03
cp 0.10 0.10 0.02 0.02
c 0.16 0.16 0.03 0.03
me 0.06 0.06 0.01 0.01
pme 0.36 0.36 0.08 0.08
covab 0.03 0.03 0.01 0.01
tau_a 0.26 0.26 0.04 NA
tau_b 0.22 0.21 0.03 NA
tau_cp 0.08 0.09 0.03 NA
sigma_y 0.93 0.92 0.02 NA
sigma_m 1.09 1.09 0.02 NA

Note. The variance components’ SEs are missing from the Mplus results because
they were reported in the variance scale in Bolger and Laurenceau (2013), and
therefore not directly comparable to the current results.

simply using their associated functions. Because Mplus is a general purpose modeling tool,
it does not easily provide these types of figures for specific purposes, such as detailed here.

The two most important reasons for using bmlm over its commercial alternatives, such
as Mplus, however, are openness and price. Regarding the former, there has recently been
an enormous push toward increasing scientific reproducibility, openness, and transparency
(e.g. Eglen et al., 2017; Munafò et al., 2017; Vuorre & Curley, 2017). Because the source
code of our program is freely available, it is easily accessible to public scrutiny, improvement
and communication, thereby potentially increasing the aforementioned goals. Second,
providing the package within the R ecosystem makes literate programming (Knuth, 1984)
more accessible than standalone programs, thereby possibly improving reproducibility
(literate programming is the combining of computer code and language to enhance technical
communication). Finally, perhaps the most import difference between bmlm and its
commercial alternatives, such as Mplus, is that our program and code is free to use, modify
and extend. For many researchers, software licenses can be too expensive, but free programs
don’t require re-allocation of research funds toward programs, and thereby make these useful
methods available to a broader audience of researchers.

Limitations

Currently, bmlm’s implementation of multilevel mediation requires that the data set
be submitted to the analysis with complete rows. That is, missing cells within rows are
not allowed, and users are required to either drop all rows of data that are not complete,
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or fill the data before entering it to the mlm() function. However, the software does not
require that the data set is balanced either across individuals or across conditions within
individuals. We believe that not allowing missing values is not a great limitation, because
in cognitive experiments data is usually collected with a computerized experiment, making
missing rows (e.g. outliers for M or Y leading to the entire trial being rejected from analysis;
allowed) much more common than missing values (e.g. value for a single variable not logged
for one trial; not allowed.)

Another limitation of bmlm is that it currently implements only the 1 → 1 → 1
mediation model (with continuous / binary Y), and more complex mediation models are
not allowed. Furthermore, issues such as covariates and latent variables (e.g. Cheong et
al., 2003) are often discussed in the literature on mediation, possibly making the model
presented here seem as limited in scope. However, latent variables, longitudinal models,
and covariates are not widely applicable in experimental studies in cognitive psychology
and neuroscience: While future work might address these issues, we feel that this relatively
simple model is widely (and easily) applicable to a wide range of data within these fields.
Furthermore, the model’s Stan source code is extensively commented and modular, thus
making it easier for experienced users to expand it to more complex models. We plan to
implement some common but more complicated models in the software in our future work,
but believe that the models currently provided cover a large number of common use cases in
cognitive psychology and neuroscience.

Considerations for Analyzing Causal Models

We also remind readers of the general limitations and pitfalls of analyzing causal
models with statistical mediation, and the additional complications related to allowing
the hypothesized causal effects to vary randomly between individuals. One of the primary
benefits of controlled experiments is that hypothesized causal variables (X) are manipulated,
and the causal assumptions are therefore easier to accept. With mediation models, the
situation is more complicated because the mediating variable (M) is thought to exert a
causal influence on Y, yet it is not experimentally manipulated.

Ultimately, to adjudicate causation from correlation in the M-Y relationship, strong
theoretical, logical, and experimental considerations need to be taken into account. For
instance, it is important to ensure that the temporal sequence of X, M, and Y within an
experimental trial supports causation from M to Y and not vice versa. In the example
presented above, we can fairly certainly assume that the actual game performance during a
trial (hit rate) occurred and was determined before the subject’s judgment of performance
(JoP) at the end of the trial. Another important consideration is that there should be no
other mediator, correlated with the proposed M, that would instead explain the mediated
effect.

A second issue with statistical mediation, and any regression method, is that measured
variables are assumed to be measured without error. If M is a very noisy measure of the
underlying construct, its association to M may be very difficult to find, or the relationship
may be otherwise unrepresentative of the relationship between the actual construct that
M represents and Y. Although outside the scope of this article, Bayesian methods allow
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relatively straightforward relaxation of this assumption: If researchers have information
about the measurement error associated with a variable, they can include it in the model.
This approach is used, for example, in the Bayesian regression R package brms (Bürkner,
2017). Because M is measured, the assumption of no measurement error is often more
difficult to satisfy in mediation models than in models where all predictors are experimentally
manipulated.

Finally, the multilevel model allows all parameters to vary between subjects. It is
therefore possible that while the population level estimated parameter might indicate a
mediated effect for the average person, the subject-specific effects might indicate that the
effect is very weak—or might be in the other direction—for a subset of individuals. In these
cases, some researchers might object to the assertion that the mediation effect holds in
the population. However, we think that significant between-subject variance is a source of
inspiration for future research. We also note that the important issue of between-person
heterogeneity is not specific to multilevel mediation, but applies to all research and analyses
where effects can vary between individuals. Multilevel models are useful–among other
reasons–because they bring this heterogeneity to researchers’ attention, and possibly deepen
their understanding of the research question.

Software dependencies and development

At its core, bmlm uses the Stan programming language through the rstan
R interface for estimating the mediation model (Stan Development Team, 2016a,
2016b). After estimating the model, users may export the underlying Stan code (run
cat(rstan::get_stancode(fit)) in R) and use it to extend the mediation model to an-
swer more complex questions. bmlm’s core functions also depend on the R packages dplyr
(Wickham & Francois, 2016) and Rcpp (Eddelbuettel & Francois, 2011). bmlm’s plotting
functions depend on R packages ggplot2 (Wickham, 2016) and qgraph (Epskamp, Cramer,
Waldorp, Schmittmann, & Borsboom, 2012). Situating bmlm in the R ecosystem also
makes it easy for users to write reproducible reports and manuscripts using the R packages
knitr (Xie et al., 2016), R Markdown (Allaire et al., 2016), and papaja (Aust & Barth, 2016).
Users may also use the tab2doc() function to directly export bmlm’s results to a Word
table (Gohel, 2016).

For more extensive user instructions, we direct users to the package’s website3. For
comments and feedback, such as suggestions of new features, users may visit the package’s
GitHub website and leave a request for a new feature. This website also allows more advanced
users to copy the package’s source code for extending its functionality.

Conclusion

Statistical mediation allows researchers to address questions about causal mechanisms
in which the effect of one variable on another is mediated by a third variable. Such research
questions about causal relations are commonplace and important in psychological science,
but to date have most commonly concerned between-person causal relations. The analysis
of mediation at the within-person level is relatively uncommon and presents additional

3https://mvuorre.github.io/bmlm/.

https://mvuorre.github.io/bmlm/
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complexities, but comes with great benefits: When individual participants provide multiple
measures of the IV, DV, and mediating variable, mediation can be assessed for each individual
and the population average, and the inference to within-person psychological processes is
more straightforward. Additionally, multilevel mediation analysis provides estimates of
the between-person variability (heterogeneity) in the effects, which are important when
considering the generalizability of the observed effects (Bolger & Laurenceau, 2013).

Here, we discussed the multilevel modeling approach to investigating within-person
mediation (Kenny et al., 1998, 2003), and introduced a free, open-source software package
for the R programming environment for conducting Bayesian multilevel mediation analyses
(bmlm; Vuorre, 2016). This software package allows users to easily estimate multilevel
mediation models, and summarize and visualize its results. The software package is freely
available at https://cran.r-project.org/package=bmlm.
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