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Signal Detection Theory is a widely used framework for understanding decisions by
distinguishing between response bias and true discriminability in various psychological
domains. Manual calculation approaches to estimating SDT models’ parameters, while
commonly used, can be cumbersome and limited. In this tutorial I connect SDT to
regression models that researchers are already familiar with in order to bring the flexi%
bility of modern regression techniques to modeling of SDT data. I begin with a glance at
SDT’s fundamentals, and then show how to manually calculate basic SDT parameters.
In the bulk of the tutorial, I show step%by%step implementations of various SDT models
using the brms R package. I progress from analyses of binary Yes/No tasks to rating
task models with multilevel structures, unequal variances, and mixtures. Throughout, I
highlight benefits of the regression%based approach, such as dealing with missing data,
multilevel structures, and quantifying uncertainty. By framing SDT models as regres%
sions, researchers gain access to a powerful set of flexible tools while maintaining the
conceptual clarity that makes SDT valuable. A regression%based approach not only sim%
plifies SDT analyses but also extends SDT’s utility through flexible parameter estimation
with uncertainty measures and the ability to incorporate predictors at multiple levels of
analysis.
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1. Signal Detection Theory

Signal Detection Theory (SDT) is a framework for studying, understanding, and modeling
a wide range of psychological phenomena (Green & Swets, 1966). Its origins are in the psy%
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chophysical study of perception, but it has since been used to understand memory, decision
making, and other domains. So what is SDT?

“Detection theory entered psychology as a way to explain detection experiments,
in which weak visual or auditory signals must be distinguished from a ‘noisy’ back%
ground.” (Macmillan & Creelman, 2005, p.xiii)

To unpack this definition, consider a recognition memory experiment where participants
view a series of images, some of which they have not seen before (new items) and some of
which they have seen before (old items). For each item, participants decide whether they have
seen the item before (and thus give an “old” response) or not (a “new” response).

A straightforward analysis of data from this experiment focuses on accuracy: What
percentage of items participants correctly classified as old or new? Such analyses of accuracy,
however, are suboptimal because they conflate two critical factors, fundamental to SDT, that
plausibly underlie participants’ responses: Response bias (commonly termed c for criterion)
and the ability to discriminate old from new items (commonly termed d’ for discriminability).
Through directly modeling these two processes, SDT has repeatedly been shown to explain
data better than models implied by analyses of accuracy (Kellen et al., 2021; Macmillan &
Creelman, 2005, p.13). Why?

In this hypothetical experiment, participants might respond “old” for (at least) two
reasons: A tendency to respond “old”, and an underlying ability to discriminate previously
seen items from new items. The conceptual basis of SDT (keeping with a memory task
example) is that each stimulus elicits some experience of “familiarity” (commonly termed
signal strength or evidence). Because of noise in the environment and perceptual, cognitive,
and other information processors involved, even for a fixed stimulus the resulting evidence
is not constant but instead varies from trial to trial.

Figure  1:  Illustration of subjective evidence distributions postulated by Signal Detection
Theory. Each stimulus presentation elicits a degree of evidence, which is assumed to be nor%
mally distributed as a sum of many unknown sources of noise in the information processing
flow from stimulus to consciousness. On noise trials (left; e.g. new items in a memory exper%
iment), the evidence distribution is centered on zero. On signal trials (right; e.g. old items)
the distribution has some positive mean if the participant can—on average—distinguish the
signal from noise. The vertical line illustrates the decision criterion c which the evidence must
exceed for a participant to decide that the trial contained a signal. The distance between the

two distributions’ means indicates discriminability d’.
The participants then decide, based on whether current evidence exceeds their criterion,

whether they’ve seen the stimulus previously (“old”) or not (“new”). Some individuals might
have a liberal bias and report “old” on trials with even modest degrees of evidence. Others
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might be conservative and require a greater degree of evidence before deciding they’ve seen
the stimulus before. The decision process posited by SDT, based on subjective evidence and
thresholds, is visualized in Figure 1.

Since the introduction of SDT in studies on perception, and its later widespread adoption
in e.g. memory research, the conceptual framework and analytic machinery has been applied
in a broad range of areas. For example, in one study, we showed participants photographs of
individuals who were injected with a bacterial endotoxin or not, and participants’ task was
to detect whether the individual was ill or not (Leeuwen et al., 2024). In another, participants
viewed videos of individuals that were either lying or not, and their task was to determine
whether the individual was lying or not (Zloteanu & Vuorre, 2024). The key to SDT’s success
in such a wide variety of domains lies in its applicability even in the absence of information
about the kinds of cues that inform people’s decisions:

“A full understanding of the decision process […] is difficult, if not impossible. The
decisions depend on many particulars: what the decider knows, his or her expectations
and beliefs, how later information affects the interpretation of the original observations,
and the like. An understanding of much domain%specific knowledge is needed […].
Fortunately, much can be said about the decision process without going into these
details. Some characteristics of a yes%no decision transcend the particular situation in
which it is made. The theory discussed here treats these common elements. This theory,
known generally as signal-detection theory, is one of the greatest successes of mathematical
psychology.” (Wickens, 2001, p. 4)

Our conceptual treatment of SDT, for the purposes of an applied tutorial, was necessarily
brief. Readers interested in more complete treatments should consult books such as Wickens
(2001), Macmillan & Creelman (2005), or Green & Swets (1966). An accessible article with
computational details is Stanislaw & Todorov (1999).

1.1. Current work: Estimating SDT models with regression

While SDT posits latent probability distributions as the basis for decision making, it
is also widely applicable as a relatively theory%free analytic framework that simply allows
separating response biases from latent abilities, as suggested by the examples above. It is
therefore often considered a standard tool in any behavioral scientist’s toolkit. Subsequently,
software packages for calculating SDT metrics and tutorials illustrating their uses are common
(Cohen et al., 2021; Lee, 2008; Paulewicz & Blaut, 2020).

In this tutorial, I take a different approach: Much of a behavioral scientist’s quantitative
training focuses on the General(ized) Linear Model (regression) framework. It is therefore
useful to draw a direct connection between this class of common cognitive models (SDT) to
tools that researchers already know (GLM) (DeCarlo, 1998; DeCarlo, 2010; 2003).

Moreover, rather than focusing on computational methods for obtaining point estimates
of SDT metrics, as is commonly done (Stanislaw & Todorov, 1999), using the regression
framework to estimate them allows quantifying degrees of uncertainty (e.g. standard errors)
in the resulting estimates. Finally, by establishing SDT models as regressions, we gain all the
benefits of regression, such as including categorical and continuous within% and between%
subject predictors, using multilevel structures for crossed item and subject effects (Rouder
et al., 2007; Rouder & Lu, 2005), model comparison, and support of established software
packages.
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We first focus on analyses of “Yes/No” tasks, where participants’ task is to provide a
binary “Yes” or “No” response to a stimulus that either does or does not contain the “signal”
that participants attempt to detect. In the ongoing memory example, previously seen (old)
items are the signal stimuli, and new items the noise stimuli. I first illustrate how to calculate
SDT metrics “manually” using R (R Core Team, 2025). Then, I show the corresponding R
syntax for estimating the SDT model as a regression for an individual subject. We then discuss
two methods for obtaining estimates of population%level SDT parameters by first aggregating
subject%specific estimates, and then by estimating multiple subjects’ SDT parameters simul%
taneously with a multilevel model.

After discussing analyses of the basic Yes/No task, I move to rating tasks where
participants provide ordinal responses that indicate their confidence in whether a stimulus
contained the signal or not. These rating data allow for richer inference of participant
behavior and decision making processes. Correspondingly, after showing how to estimate
basic SDT models of rating data with GLMMs, I illustrate more advanced models that include
unequal variances and mixtures.

Throughout, I assume readers are familiar with regression models. I refer those in need
of a refresher to texts such as Gelman et al. (2020), McElreath (2020), or Çetinkaya%Rundel
& Hardin (2024). I implement analyses in the Bayesian framework due to its flexibility,
computational robustness, and conceptual clarity. For reasons of brevity I provide minimal
explanations of this framework; interested readers should consult standard texts such as
Kruschke (2014), McElreath (2020), and Gelman et al. (2013). Accessible introductory articles
are, for example, Kruschke & Liddell (2017a) and Kruschke & Liddell (2017b).

Finally, I show additional benefits of estimating SDT models with regression. For one,
prior distributions and multilevel models deal elegantly with edge cases where participants
have missing data (e.g.  no false alarms). Moreover, the estimated parameters seamlessly
inform other common SDT metrics, such as Receiver Operating Characteristic (ROC) curves,
all of which retain and allow representing the estimation uncertainty associated with the
underlying parameters.

2. SDT analysis of Yes/No data

The tasks outlined above are typically called “Yes/No” experiments, because the
participant’s task is to provide a binary “Yes” or “No” response to a stimulus that either does
or does not contain the “signal” that participants attempt to detect. In the ongoing memory
example, previously seen (old) items are the signal stimuli, and new items the noise stimuli.
In this tutorial, we first focus on analyses of data from Yes/No tasks.

2.1. Example Yes/No task and data

To illustrate the most commonly used SDT model, we examine data from the control
condition of Experiment 2 in Koen et al. (2013): 48 subjects studied a list of 200 words for 1.5s
each. After a filler task, participants were tested with 200 new and 200 old words. In the test
phase, participants rated their confidence in whether each word was new or old with a 6%
point Likert item (1: “sure new”, 2: “maybe new”, 3: “guess new”, 4: “guess old”, 5: “maybe old”,
6: “sure old”). This data set is included in the R package MPTinR (Singmann & Kellen, 2013).

For the purposes of the first part of this tutorial, and following the authors’ first analysis
(Table 1 in Koen et al. (2013)), we first bin the rating responses to binary “new” (1%3) and
“old” (4%6) responses. The resulting data (Table 1) is then typical of Yes/No tasks.
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Table 1:  Four rows of example recognition memory data from Koen et al. (2013).

pid trial stimulus response

1 34 Old New

3 96 Old Old

4 21 Old New

6 286 New Old

2.2. Calculating SDT parameters

It is immediately clear how to calculate a participant’s overall accuracy from data in
Table 1: Add up the trials where stimulus and response are identical, and divide the sum by
the total number of trials. Calculating SDT parameters, to which we now turn, is not much
more involved (Stanislaw & Todorov, 1999).

First, responses from a Yes/No task are divided into four categories: hits (responding “old”
to old items), misses (responding “new” to old items), false alarms (responding “old” to new
items), and correct rejections (responding “new” to new items). We then calculate hit and
false alarm rates by aggregating the response categories, z%score the rates, and either add (to
calculate response bias) or subtract (to calculate sensitivity) these z%scores. I first show how
to classify trials with R in Listing 1.
Listing 1:  Classifying Yes/No trials into hits, misses, false alarms, and correct rejections using

the case_when() function from the dplyr R package.

sdt <- dat |>
  mutate(
    type = case_when(
      stimulus == "Old" & response == "Old" ~ "hit",
      stimulus == "Old" & response == "New" ~ "miss",
      stimulus == "New" & response == "Old" ~ "fa",
      stimulus == "New" & response == "New" ~ "cr"
    )
  )

After classifying trials, we aggregate participants’ data to hit (hits / (hits + misses)) and
false alarm rates (false alarms / (false alarms + correct rejections); see Figure 1) in Listing 2,
where we also pivot the data to one row per participant (Table 2).

Listing 2:  Classifying Yes/No experiment trials into hits, misses, false alarms, and correct
rejections using the case_when() function from the dplyr R package.

sdt <- sdt |>
  count(pid, type) |>
  pivot_wider(names_from = type, values_from = n) |>
  mutate(
    hr = hit / (hit + miss),
    fr = fa / (fa + cr)
  )



Regression SDT models 6

Table 2:  Aggregated task behavior of each participant.

pid cr fa hit miss hr fr

1 110 40 116 34 0.77 0.27

2 100 50 119 31 0.79 0.33

3 118 32 126 24 0.84 0.21

4 104 46 117 33 0.78 0.31

We can then calculate the two SDT parameters from the hit and false alarm rates: The
decision criterion c and discriminability d’. d’ is calculated as the difference of the normal
distribution scores, also commonly referred to as “z%scores”, of the hit and false alarm rates
(Stanislaw & Todorov, 1999):

𝑑′ = Φ−1(𝐻𝑅) − Φ−1(𝐹𝐴𝑅) (1)
Φ is the normal distribution function, and is used to convert z scores into probabilities.

It is available in R as pnorm(). Φ−1, the normal quantile function (available in R as qnorm()),
converts proportions into z scores.

But why do we use a normal distribution? Recall from above that SDT posits that each
stimulus leads to a subjective (or “latent”) value of evidence. This evidence is not fixed by
the stimulus but varies from trial to trial because of noise in the system perceiving the
stimulus. We do not know what the myriad sources of this variability might be, so the normal
distribution that results from the sum of many independent variations, is a natural choice.
Note that other distributions, although rarely used, are possible (DeCarlo, 1998).

The response criterion c is calculated as:

𝑐 = −Φ−1(𝐻𝑅) + Φ−1(𝐹𝐴𝑅)
2

(2)

It is important to note that most treatments use a minus sign in the calculation of c
(Stanislaw & Todorov, 1999). This means that negative values of c indicate a “liberal” bias
toward responding “yes”, and positive values of c indicate a “conservative” tendency toward
responding “no” (see Figure 2). An alternative parameterization omits the negative sign, in
which case positive values of c indicate a (“liberal”) bias toward responding “yes”, and negative
values of c indicate a (“conservative”) bias toward responding “no”.

Listing 3:  Calculating z%scored hit and false alarm rates and the SDT parameters c and d’.

sdt <- sdt |>
  mutate(
    zhr = qnorm(hr),
    zfr = qnorm(fr),
    crit = -(zhr + zfr) / 2,
    dprime = zhr - zfr
  )

I z%score the hit and false alarm rates and then calculate each participant’s c and d’ from
the z%scores in Listing 3. The resulting data table is shown in Table 3.



Regression SDT models 7

Table 3:  Four subjects’ SDT parameters and the quantities used to calculate them.

pid hr fr zhr zfr crit dprime

1 0.77 0.27 0.75 −0.62 −0.06 1.37

2 0.79 0.33 0.82 −0.43 −0.19 1.25

3 0.84 0.21 0.99 −0.79 −0.10 1.79

4 0.78 0.31 0.77 −0.51 −0.13 1.28

(As a side note, c is only one of many bias measures. For example, early researchers on
SDT, such as J. C. R. Licklider—who incidentally also laid the groundwork for the modern
Internet—favored a likelihood ratio measure (Licklider, 1959; Macmillan & Creelman, 2005,
p. 31%36).)

The sdt data frame (Table 3) now has every participant’s d’ and c, and the quantities
that went into calculating them. I show three participants’ implied SDT models, and all
participants’ SDT parameters, in Figure 2.

Figure 2:  Left. The signal detection model for three participants. The two curves are the noise
(dashed) and signal distributions (solid); the vertical line represents the response criterion c.
d’ is the distance between the two distributions’ means. Of these three participants, 29 has the
lowest c and therefore the most liberal response bias. Participant 19 has the smallest d’ and
therefore the worst ability to discriminate between new and old items. Right. Scatterplot of
all participants’ criteria and d’, with the three participants shown in the left panel highlighted

in bold font.

3. Estimating SDT parameters with regression

We have now “manully” calculated, rather than statistically estimated, participants’ SDT
parameters. While standard practice, this approach has at least two potential downsides. First,
we have not quantified our uncertainty in the parameters. For example, were we interested
in a statistical comparison of participant 19′s and 29′s criteria, we could only report a point
estimate of this difference.

Second, any further questions—estimating (differences in) population means, for example
—would require additional models of these point estimates. These further models would
ignore the uncertainty inherent in the participant%specific parameters. This point may not
matter for perfectly balanced designs, but would be especially important when participants
complete different numbers of trials or have missing data.
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Moreover, while it is pedagogically useful to go through these calculations, there might
also be related downsides: These quantities are naturally estimated in common regression
models, and by not making that connection explicit we are not contributing as effectively to
further quantitative learning. Because researchers are typically already familiar with regres%
sion techniques, using those instead of manual calculations may prove useful in practice as
well (Decarlo, 2003).

Therefore, we now move to the main topic of this tutorial: Estimating SDT models using
Generalized Linear Models (GLM).

3.1. Coding categorical variables

We begin by considering the raw data in Table 1. Because the data contains categorical
variables, it is first important to understand how a model might use them. In R, this specifi%
cation is done via “contrasts” (such as dummy variables, contrast codes, etc) that code them
into numerical values when used in models.

When binary variables are modeled in R (either as outcomes or predictors), R by default
will assign them treatment codes (also known as dummy variables). Therefore stimulus and
response would be coded as “New”: 0 and “Old”: 1 (from their alphabetical order). For reasons
visible to some readers in Equation 2 and further elaborated below, we instead sum%to%zero%
code stimulus as “New”: −0.5 and “Old”: 0.5 (Table  4). This will ensure that our model’s
intercept will be “halfway between” the (z%scored) hit and false alarm rates (now take another
look at Equation 2). I specify this coding scheme in Listing 4.

Listing 4:  Creating sum to zero contrast codes for the stimulus variable.

contrasts(dat$stimulus) <- c(-0.5, 0.5)

Table 4:  Numerical contrast codes of categorical variables when modeled.

Contrast code

Data value stimulus response

New −0.50 0

Old 0.50 1

3.2. Specifying the model

Now that we have prepared our data, we proceed to specifying our regression model. We
first consider this model for one participant. We model responses r (“No”: 0, “Yes”: 1) at row i
as Bernoulli distributed with probability 𝑝𝑖 that 𝑟𝑖 = 1 (line 1 below). (Bernoulli distribution
is the binomial distribution for binary responses.)

𝑟𝑖 ∼ Bernoulli (𝑝𝑖)
𝑝𝑖 = Φ(𝛽0 + 𝛽1s𝑖)

(3)

Because probabilities have lower and upper limits at 0 and 1, we model p through a link
function. A common choice for a link function for models of binary data is the logistic, leading
to the familiar logistic regression model. However, we use the probit link function Φ which
maps the unbounded continuous linear combination of the predictors to probabilities (line
2 above).

Given this parameterization, the intercept of the model (𝛽0) will indicate the z%scored
probability of responding “old” when all predictors are zero (see Listing 4). When stimulus,
our predictor, is “sum%to%zero” coded as we have done above, the intercept corresponds to %
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c (see Equation 2). The slope of the model (𝛽1) is the difference in z%scored probabilities of
saying “old” between old and new items, and therefore 𝑑′ = 𝛽1 (see Equation 1). For a more
complete treatment of the connection between SDT models and GLM, see DeCarlo (1998).

3.3. Estimating the model

We now have a variety of software options for estimating the GLM. For this simple model,
we could use base R’s glm(). Here, we use the Bayesian regression modeling R package brms
(Bürkner, 2017), because its model formula syntax extends seamlessly to more complicated
models that we will discuss later. We can estimate the GLM with brms’s brm() function by
providing as arguments a model formula in brms syntax (identical to base R model syntax for
simple models), an outcome distribution with a link function, and a data frame.

brms’s model syntax uses variable names from the data. In Listing  5, we regress the
binary response outcome on the binary stimulus predictor (response ~ stimulus). We then
specify that outcomes are bernoulli distributed with a probit link function with family =
bernoulli(link="probit"). We will only model the first participant’s data, and therefore
specify the data with data = filter(dat, pid==1).

The brm() function also allows specifying prior distributions on the parameters, but for
this introductory discussion we omit discussion of priors. Finally, we specify file to save
the estimated model to a file so that we don’t have to re%estimate the model whenever we
restart R.

Listing 5:  Fitting the SDT model as a GLM with the brm() function

fit_glm <- brm(
  response ~ stimulus,
  family = bernoulli(link = "probit"),
  data = filter(dat, pid == 1),
  file = "cache/brm-glm"
)

The estimated model is saved in fit, whose summary() method returns a numerical
summary of the estimated parameters along with some information and diagnostics about
the model:

 Family: bernoulli 
  Links: mu = probit 
Formula: response ~ stimulus 
   Data: filter(dat, pid == 1) (Number of observations: 300) 

Regression Coefficients:
          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept     0.06      0.08    -0.09     0.22 1.00     3681     2457
stimulus1     1.38      0.15     1.07     1.68 1.00     3102     2345

The regression parameters (Intercept (−𝑐 = 𝛽0) and stimulus1 (𝑑′ = 𝛽1)) are described
in the “Regression Coefficients” table in the above output. Estimate reports the posterior
means, which are comparable to maximum likelihood point estimates. Est.Error reports
the posterior standard deviations, which are comparable to standard errors. The estimated
parameters’ means match the point estimates we calculated by hand (see Table 3), but note
the reversed sign of c. The next two columns report the parameter’s 95% Credible Intervals
(CIs). Finally, the Rhat and _ESS values provide diagnostic information (convergence and
effective posterior sample size, respectively) about the Bayesian estimation procedure. The

https://github.com/paul-buerkner/brms
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former should be close to 1.00, and the latter as large as possible. We do not consider these
metrics further, but see e.g. Gelman et al. (2013).

3.4. Interpreting the model

We read in the above output that the model intercept, corresponding to %c, has a positive
posterior mean, but its CI considerably overlaps zero. Therefore, this participant is not
strongly biased in favor of responding either “Yes” or “No”. The slope coefficient stimulus1,
corresponding to d’, is positive and indicates that the latent evidence distribution of signal
trials for this participant is ~1.4 z%scores greater than the noise distribution: The participant
has good discriminability and is able to tell old stimuli from new.

We now return to the two shortcomings of manually calculating SDT parameters alluded
to above. First, the model assigns credibility to a range of parameter values (the CI), instead of
returning only the most likely value (the posterior mean). I illustrate these degrees of certainty
in the left panel of Figure 3. This figure is a smoothed bivariate density of the scatterplot of
posterior samples of 𝑝(𝛽0, 𝛽1), and indicates more credible SDT parameter values in lighter
yellow hues. The point estimate shown in red is a poor representation of this more complete
picture.

Figure 3:  SDT parameters as estimated with a Generalized Linear Model. Left. The (approx%
imate) joint posterior density of subject 1′s SDT parameters. Lighter hues indicate higher
posterior density and therefore parameter values in which we are more confident. The red
dot indicates the manually calculated point estimate of c and d’. Right. Posterior means
and 95%CIs of all participants’ parameters (empty circles and intervals) along with manually

calculated point estimates (filled circles). The two are in perfect agreement.
Second, consider the bottom and top points in the c column of Figure 3. All we could say

based on the point estimates is that the top participant has a far more positive (conservative)
criterion than the bottom participant. However, the bayesian estimates would allow directly
testing that difference, by virtue of retaining uncertainty in the parameter estimates. Finally,
notice how straightforward it was to estimate the SDT parameters with regression: Instead of
multiple lines of data wrangling and calculation, the regression model directly returns SDT
parameters from the raw data.
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4. SDT for multiple participants

We have now estimated the SDT model’s parameters for one subject’s data using two
methods: Calculating point estimates manually and estimating them with a GLM. The main
difference between these methods is that modeling provided estimates of uncertainty in the
parameters, whereas the manual calculation did not. This point leads us directly to multilevel
models (Gelman & Hill, 2007; Rouder et al., 2007; Rouder & Lu, 2005), which we discuss next.

Researchers are usually not primarily interested in the specific subjects that happened
to participate in their experiment. Instead the population of potential subjects is the target of
inference. Therefore, we are unsatisfied with parameters which describe only the individuals
in our sample: The final statistical model should have parameters that estimate features of
the population of interest.

Broadly, there are two methods for obtaining these population%level parameters. The
most common method is to aggregate manually calculated subject%specific point estimates of
d’ and c to their sample means and standard deviations. From these, we can calculate standard
errors, t%tests, confidence intervals, and so on. The second method involves fitting one model
simultaneously to all participants’ data.

4.1. Estimating by summarizing subjects’ point estimates

Above we calculated d’ and c for every participant in the sample. We can therefore calcu%
late sample means and standard errors for both parameters using these individual%specific
values. I show one way to do this aggregation in R using summarise() from the dplyr package
in Listing 6.

Listing 6:  Aggregating a sample’s c and d’.

sdt_agg <- sdt |>
  summarise(
    across(
      c(crit, dprime),
      list(
        Mean = mean,
        SD = sd,
        SE = ~sd(.x) / sqrt(length(.x))
      )
    )
  )

Table 5:  Sample summaries of SDT parameters.

crit_Mean crit_SD crit_SE dprime_Mean dprime_SD dprime_SE

−0.23 0.34 0.05 1.18 0.44 0.06

The sample means are estimates of the population means, and the sample standard devi%
ations divided by square root of the number of subjects are standard deviations of the means’
sampling distributions, the standard errors. Note that this method involves calculating point
estimates of unknown parameters (the subject%specifc estimates), and then summarizing these
parameters with additional models. In other words, we first fit N models with P parameters
each (N = number of subjects, P = 2 parameters), and then P more models to summarise the
subject%specific models.
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4.2. Multilevel model

Another method is to build a multilevel model that simultaneously estimates subject%
specific and population%level parameters (Gelman & Hill, 2007; McElreath, 2020). Rouder &
Lu (2005) and Rouder et al. (2007) discuss multilevel models in the context of Signal Detection
Theory. Multilevel models are variously also known as hierarchical, mixed, random%effect,
and Generalized (Linear) Mixed Models (GLMMs).

This model is identical to the GLM in Equation 3, but now the subject%specific d’s and %
cs are modeled as draws from a multivariate normal distribution, whose parameters describe
the population. We subscript subjects’ parameters 𝛾 with j, rows in data with i, and write the
model as:

𝑟𝑖𝑗 ∼ Bernoulli (𝑝𝑖𝑗)

𝑝𝑖𝑗 = Φ((𝛾0𝑗 + 𝛽0) + (𝛾1𝑗 + 𝛽1)s𝑖𝑗)

[𝛾0
𝛾1

] ∼ MVN ([00],Σ)

Σ = (𝜏0
0

0
𝜏1

)(1
𝜌

𝜌
1)(𝜏0

0
0
𝜏1

)

(4)

The responses 𝑟𝑖𝑗 are 0 if participant j responded “new” on trial i and 1 if they responded
“old”. The probability of an “old” response on row i for subject j is 𝑝𝑖𝑗 (line 1 in Equation 4). We
then write a linear model on the p’s z%scores (Φ, line 2). The subject%specific intercepts (recall,
−𝛾0𝑗 = 𝑐𝑗) and slopes (𝛾1𝑗 = 𝑑′

𝑗) are now deviations from population%level parameters 𝛽,
which can be interpreted as parameters “for the average person” (Bolger & Laurenceau, 2013).

These subject%specific deviations are modeled as draws from a multivariate normal
distribution, whose covariance matrix Σ contains the (co)variances of the parameters in the
population (line 3). The software we use instead estimates standard deviations and correla%
tions, and so the covariance matrix is constructed on line 4. The standard deviations 𝜏  describe
the between%person heterogeneities in the population. The correlation term 𝜌 describes the
relationship between d’ and c: Are people with a higher d’ more likely to have a higher c?
This model is therefore more informative than running multiple separate GLMs, because it
allows examining parameters’ heterogeneity in the population (Vuorre et al., 2024).

The brms syntax for this model is very similar to the one%subject model. We have five
population%level parameters to estimate (𝛽, 𝜏, 𝜌). The intercept and slope describe the means:
In R and brms modeling syntax, an intercept is indicated with 1 (it is automatically included,
so I omit it), and slope of a variable by including that variable’s name in the data.

However, we also have three (co)variance parameters to estimate. To include subject%
specific parameters (recall, subjects are indexed by pid in the data frame), and therefore their
(co)variance parameters, we expand the formula to response ~ stimulus + (stimulus |
pid). Otherwise, the call to brm() is the same as with the GLM above:

fit_glmm <- brm(
  response ~ stimulus + (stimulus | pid),
  family = bernoulli(link = "probit"),
  data = dat,
  file = "cache/brm-glmm-1"
)

However, before proceeding, we introduce a computational shortcut. As the number of
trials and participants increases, data in long format (such as dat shown in Table 1) quickly
grows in size. Because of how Bayesian models are estimated, larger data and more complex
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models increase the model estimation time. We therefore estimate exactly the same model,
but on data that is aggregated to counts of unique response%predictor combinations to speed
up the estimation process. We do this in Listing 7, where we aggregate the raw data (with
14400 rows) to a table of pid%stimulus%response counts (indicated by n in the data table that
now has 192 rows). We can then reap the speed benefits of this data aggregation by using
weights(n) to indicate how much weight to give to observation.

Listing 7:  Fitting the SDT model for multiple participants as a GLMM with brm().

dat_agg <- dat |>
  count(pid, stimulus, response)

fit_glmm <- brm(
  response | weights(n) ~ stimulus + (stimulus | pid),
  family = bernoulli(link = "probit"),
  data = dat_agg,
  file = "cache/brm-glmm"
)

The Regression Coefficients in the output below are %c (Intercept = 𝛽0) and
d’ (stimulus1 = 𝛽1) for the average person. Recall that we are looking at numerical summaries
of (random samples from) the parameters’ posterior distributions: Estimate is the posterior
mean, Est.Error the posterior standard deviations, and l-95% CI and u-95% CI the limits of
the 95%CI.

 Family: bernoulli 
  Links: mu = probit 
Formula: response | weights(n) ~ stimulus + (stimulus | pid) 
   Data: dat_agg (Number of observations: 192) 

Multilevel Hyperparameters:
~pid (Number of levels: 48) 
                         Estimate Est.Error l-95% CI u-95% CI
sd(Intercept)                0.34      0.04     0.27     0.42
sd(stimulus1)                0.42      0.05     0.33     0.53
cor(Intercept,stimulus1)     0.20      0.15    -0.11     0.48

Regression Coefficients:
          Estimate Est.Error l-95% CI u-95% CI
Intercept     0.22      0.05     0.12     0.33
stimulus1     1.17      0.07     1.04     1.29

These estimates tell us that the average person in the population from which our sample
was drawn has a somewhat liberal response bias and good ability to discriminate old from new
items. To clarify the correspondence between the two estimation methods, we can compare
these population%level parameters of this model to the sample summary statistics we calcu%
lated above. The posterior means map to the calculated means, and the posterior standard
deviations match the calculated standard errors (Table 5). I also visualize these estimates in
Figure 4.

However, the GLMM also returns estimates of the parameters’ (co)variation in the popu%
lation. Notice that we also calculated the sample standard deviations, but we have no estimates
of uncertainty in those point estimates (Table 5). The GLMM, on the other hand, provides full
posterior distributions for these parameters. The heterogeneity parameters are reported in the
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Multilevel Hyperparameters section, above. We find that the criteria are positively correlated
with d’s. The two standard deviations are visualized in the middle panel of Figure 4.

Figure  4:  Left. The (approximate) joint posterior density of the average d’ and criterion.
Lighter values indicate higher posterior probability. Middle. The (approximate) joint poste%
rior density of the standard deviations of d’ and criterion in the population. In both panels,
the red dot indicates sample statistics. Right. Subject%specific d’s and criteria as given by the
independent models (arrow origins), and as estimated by the hierarchical model (arrow tips).
The hierarchical model shrinks the estimated parameters toward the population means. This
shrinkage is greater for more extreme parameter values: Each subject%specific parameter is a

compromise between that subject’s data, and other subjects in the sample.
It is evident in Figure 4 that the sample means approximately match the posterior mean

population means, but less so for the standard deviations, whose sample statistics are not
at the peak of the standard deviations’ posterior distribution. By ignoring the uncertainty
in the subject%specific parameters, the ‘manual calculation’ method has over%estimated the
heterogeneity of d’ and c in the population, in comparison to the GLMM which takes the
subject%specific parameters’ uncertainty into account.

This deviation has further implications, revealed by investigating the two methods’ esti%
mates of the subject%specific parameters. Recall that the manual calculation method involved
estimating (the point estimates of) a separate model for each participant. A hierarchical model
considers all participants’ data simultaneously, and the estimates are allowed to inform each
other via a shared prior distribution. This “partial pooling” of information (Gelman & Hill,
2007) reduces overfitting and thereby returns estimates with better predictive performance
(Efron & Morris, 1977). The subject%specific effects are pulled toward their means, an effect
that is most visible for participants with most extreme values (right panel of Figure 4).

5. SDT analysis of rating data

Until now, we have considered analyses of a detection task where stimuli were either
old or new, and participants provided binary “old” and “new” responses. We now turn to the
Rating task where participants instead rate their degree of confidence that the stimulus was
old or new.

5.1. Example rating task and data

This, as mentioned above, is exactly what subjects in Koen et al. (2013) did: On each trial,
subjects responded with a 6%point Likert item indicating their confidence in the item being
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new or old (1: “sure new”, 2: “maybe new”, 3: “guess new”, 4: “guess old”, 5: “maybe old”, 6:
“sure old”). I show these data in Table 6.
Table 6:  Aggregated example data from subject 1 in the control condition of Koen et al. (2013),

Experiment 2. First and last two rows are shown for brevity.

pid stimulus response n

1 Old 1 15

1 Old 2 11

… … … …

1 New 5 10

1 New 6 15

A common and plausible interpretation of these data is that participants use a set of
criteria, such that greater evidence is required for greater numerical responses. That is, there
will be different criteria for responding “definitely new”, “maybe new”, and so forth. Generally,
such data is commonly analyzed with models that assume a continuous (usually normally
distributed) outcome. However, this practice can lead to problems when data isn’t well%
behaved, and therefore models that appropriately account for the responses’ ordinal nature
are recommended (Liddell & Kruschke, 2018). An accessible introduction to such ordinal
models can be found in Bürkner & Vuorre (2019), and Chapter 12.3 of McElreath (2020).

Above, we noted that a GLM with a Bernoulli response function and probit link function
is a regression formulation of the basic SDT model of Yes/No data. Similarly, one class of
ordinal models, called the cumulative model in Bürkner & Vuorre (2019), provides a regression
formulation of SDT models for data from a Rating task (DeCarlo, 1998; Decarlo, 2003).

5.2. Model for one subject

For rating data, the SDT model is very similar to the one for Yes/No task data, but now
includes multiple intercepts, commonly referred to as thresholds. These thresholds index
criteria that subjects use to split their internal experiences (evidence) to the different response
categories, and therefore conceptually correspond to c. For k response options, we need 𝑘 − 1
thresholds. The criteria are ordered: People should be more likely to respond “sure old” rather
than “maybe old” when evidence (memory strength) is greater. To connect with the ongoing,
we label these thresholds as 𝑐𝑘 (𝜏𝑘 in Bürkner & Vuorre (2019); 𝛼𝑘 or 𝜅𝑘 in McElreath (2020),
Chapter 12.3.) We then write the probability of a response r being in category k in Equation 5.

𝑃𝑟(𝑟𝑖 = 𝑘) = Φ(𝑐𝑘 − 𝜂𝑖) − Φ(𝑐𝑘−1 − 𝜂𝑖). (5)
We can consider Equation 5 as a somewhat convoluted link function, after which we

specify a regression model on the linear predictor 𝜂:
𝜂𝑖 = 𝛽1𝑠𝑖 (6)

Note that we conspicuously omitted an intercept in the linear model (Equation 6), because
the intercepts are already included as thresholds in Equation 5: The cumulative model esti%
mates intercepts (𝑐𝑘) that partition the latent evidence distribution into response categories
(k), and a slope parameter that indexes the distance between the noise and signal distribution’s
means. To connect with the SDT model for Yes/No data, we label the slope (𝛽1) again as d’.
The brms syntax for estimating this model with participant 1′s data is shown in Listing 8.
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Listing 8:  Estimating one participant’s rating data with a cumulative model.

fit_evsdt1 <- brm(
  response | weights(n) ~ stimulus,
  family = cumulative(link = "probit"),
  data = filter(dat2, pid == 1),
  file = "cache/brm-glm-evsdt"
)

Note that the only change from the Bernoulli model of Yes/No data (Listing 5) is that we
now used family = cumulative(), and the actual rating data (dat2). In addition, we have not
sum%to%zero coded the stimulus predictor for this model. The model’s posterior distribution
is summarised below:

 Family: cumulative 
  Links: mu = probit; disc = identity 
Formula: response | weights(n) ~ stimulus 
   Data: filter(dat2, pid == 1) (Number of observations: 12) 

Regression Coefficients:
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept[1]     0.00      0.10    -0.19     0.19 1.00     5332     3112
Intercept[2]     0.39      0.10     0.20     0.59 1.00     5860     3160
Intercept[3]     0.61      0.10     0.42     0.82 1.00     5634     3383
Intercept[4]     0.92      0.11     0.71     1.13 1.00     5667     3456
Intercept[5]     1.26      0.12     1.04     1.49 1.00     5551     3443
stimulusOld      1.37      0.14     1.11     1.64 1.00     5497     2876

Further Distributional Parameters:
     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
disc     1.00      0.00     1.00     1.00   NA       NA       NA

The five intercepts are the five thresholds, and stimulus1 is d’. We can now illustrate
graphically how the estimated parameters map to the signal detection model. d’ is the separa%
tion of the signal and noise distributions’ peaks: It indexes the subject’s ability to discriminate
signal from noise trials. The five intercepts are the (z%scored) criteria for responding with the
different confidence ratings. If we convert the z%scores to proportions (using R’s pnorm() for
example), they measure the (cumulative) area under the noise distribution to the left of that
z%score. The model is visualized in Figure 5.

Figure 5:  Signal detection model of participant 1′s rating data, visualized from the parameters’
posterior means. The two distributions are the noise distribution (dashed) and the signal
distribution (solid). Vertical lines are the estimated thresholds. d’ is the distance between the

peaks of the two distributions.
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5.3. Model for multiple participants

For a sample of subjects, we could again compute each individual’s parameters and sum%
marize them in another model. We won’t bother but instead turn immediately to a multilevel
model formulation. A multilevel model, however, can take at least two forms. The first, shown
now, includes subject%specific deviations in the linear model of 𝜂:

𝜂𝑖𝑗 = 𝛾0𝑗 + (𝛾1𝑗 + 𝛽1)s𝑖𝑗

[𝛾0
𝛾1

] ∼ MVN ([00],Σ)
(7)

Notice that we again omit any population%level intercept in Equation 7, but include by%
subject random intercepts 𝛾0. I omit expanding Σ here–it is the same as in Equation 4. The
brms syntax is the same as in Listing 7, but instead of a bernoulli outcome distribution, we
use cumulative() (Listing 9). Alternatively, the model syntax is identical to that in Listing 8,
but we now include subject%specific random coefficients with (stimulus | pid).

Listing 9:  Estimating a cumulative model for multiple participants with brm().

fit_evsdt <- brm(
  response | weights(n) ~ stimulus + (stimulus | pid),
  family = cumulative(link = "probit"),
  data = filter(dat2),
  file = "cache/brm-glmm-evsdt"
)

The model summary is printed below

 Family: cumulative 
  Links: mu = probit; disc = identity 
Formula: response | weights(n) ~ stimulus + (stimulus | pid) 
   Data: filter(dat2) (Number of observations: 576) 

Multilevel Hyperparameters:
~pid (Number of levels: 48) 
                           Estimate Est.Error l-95% CI u-95% CI
sd(Intercept)                  0.30      0.03     0.24     0.38
sd(stimulusOld)                0.46      0.05     0.37     0.58
cor(Intercept,stimulusOld)    -0.36      0.13    -0.60    -0.09

Regression Coefficients:
             Estimate Est.Error l-95% CI u-95% CI
Intercept[1]    -0.81      0.05    -0.90    -0.71
Intercept[2]    -0.16      0.05    -0.25    -0.06
Intercept[3]     0.31      0.05     0.22     0.41
Intercept[4]     0.58      0.05     0.48     0.67
Intercept[5]     0.90      0.05     0.81     0.99
stimulusOld      1.12      0.07     0.98     1.26

Further Distributional Parameters:
     Estimate Est.Error l-95% CI u-95% CI
disc     1.00      0.00     1.00     1.00

Draw your attention to the “Multilevel Hyperparameters” section. The standard deviation
of the model intercept in the population is approximately 0.3 (posterior mean), and that of the
d’ is ~0.5. However, the link function of the model partitions the latent normal (“evidence”)
distribution into k (6) categories using k-1 thresholds (5). The latter are estimated for the



Regression SDT models 18

population and shown above as Intercept[1-5]. Why is there only a standard deviation
parameter for one intercept?

The answer, in brief, is that it is difficult to estimate subject%specific thresholds as random
parameters and simultaneously retain their ordering. Therefore, the brms syntax estimates
instead one “slope” parameter for each participant that shifts the entire evidence distribution
for that participant, relative to the “average subject”. The interpretation of such a shift is
interchangeably either that a participant’s evidence distribution has shifted, or that their
thresholds have shifted by an identical amount. We agree with the latter interpretation—an
equal shifting of the thresholds—because it makes little sense to assume that anyone would
have a non%zero evidence distribution for noise stimuli.

Figure  6:  Implied SDT model from multilevel regression model with by%subject random
intercepts and slopes. Density curves indicate latent evidence distributions (dashed line: noise

trials; solid line: signal trials). Vertical lines indicate thresholds.
To aid interpretation, I have also visualized the multilevel cumulative model’s implied

SDT model, for the population average and three subjects, in Figure 6. A close inspection of
this figure reveals that the distance between the thresholds (vertical lines) is identical for every
participant (and the population average). While this formulation of the model is parsimonius,
it is important to note that it could be considered in violation of some SDT assumptions by
not allowing these thresholds to flexibly vary between individuals. To address this potential
limitation, we now estimate a variation of this model that estimates fixed subject%specific
thresholds.

5.3.1. A multilevel model with subject-specific thresholds
The syntax for this model is similar to above, but we use thres(gr = pid) to specify

that the thresholds should be estimated separately for each participant (Listing 10). Then, we
omit subject%specific random intercepts by (0 + stimulus | pid) and cmc = FALSE, which
ensures that R’s default cell%mean coding for models without an intercept is disabled. Finally,
we increase the adapt_delta control parameter from its default 0.8 to better estimate the
model’s posterior distribution.
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Listing 10:  Estimating multiple participants’ rating data with a cumulative model with fixed
subject%specific thresholds.

fit_evsdt_thresholds <- brm(
  bf(
    response | weights(n) + thres(gr = pid) ~ stimulus + (0 + stimulus |
pid),
    cmc = FALSE
  ),
  family = cumulative(link = "probit"),
  data = filter(dat2),
  control = list(adapt_delta = .99),
  file = "cache/brm-glmm-evsdt-thresholds"
)

This “fixed thresholds” model is conceptually very similar to the “random intercepts”
model above, but instead of estimating one deviation per subject, we have estimated all five
thresholds for all participants. To make this clear, I show the model’s summary below. Con%
trast this to summary above, which reported random intercepts (their SD as sd(Intercept))
and slopes (sd(stimulusOld)), this only includes random slopes and instead fixed (“popula%
tion level”) thresholds for participants, reported as Intercept[subject, threshold], below:

 Family: cumulative 
  Links: mu = probit; disc = identity 
Formula: response | weights(n) + thres(gr = pid) ~ stimulus + (0 + stimulus
| pid) 
   Data: filter(dat2) (Number of observations: 576) 

Multilevel Hyperparameters:
~pid (Number of levels: 48) 
                Estimate Est.Error l-95% CI u-95% CI
sd(stimulusOld)     0.44      0.05     0.35     0.55

Regression Coefficients:
                Estimate Est.Error l-95% CI u-95% CI
Intercept[1,1]     -0.01      0.10    -0.20     0.18
Intercept[1,2]      0.38      0.10     0.18     0.57
Intercept[1,3]      0.60      0.10     0.40     0.79
Intercept[1,4]      0.90      0.11     0.69     1.11
Intercept[1,5]      1.25      0.11     1.02     1.47
Intercept[2,1]     -1.89      0.21    -2.32    -1.51
Intercept[2,2]     -0.33      0.09    -0.51    -0.14
Intercept[2,3]      0.38      0.09     0.19     0.56
 [ reached getOption("max.print") -- omitted 233 rows ]

Further Distributional Parameters:
     Estimate Est.Error l-95% CI u-95% CI
disc     1.00      0.00     1.00     1.00

To help clarify the difference between these two models, I show the implied latent distri%
butions and thresholds from the “fixed thresholds” model in Figure 7 (along with Figure 6).
As is shown, the “fixed thresholds” model (bottom) allows for flexible thresholds for each
participant, whereas the “random intercepts” model (top) only allows the average location of
the thresholds to vary between participants. Also notable is the extremely low first threshold
for participant 19: This participant had zero “1 (sure new)” responses (either for new or



Regression SDT models 20

old items). Therefore the threshold location, when they are treated as fixed, not random, is
completely decided by the prior distribution. By default, brms has used a 𝑡+(3, 0, 2.5) prior.

Figure 7:  Top. As Figure 6. Bottom. Implied SDT models for three participants, and popula%
tion, from multilevel model with by%subject random slopes and fixed intercepts.

Given these two different models for essentially the same analytic problem, it is then
critical to compare their key parameters. In Figure 8, I show d’s from both models for every
participant. As shown, while the participant%specific parameters differ between models, the
differences are small and their rank%orderings are very similar. Moreover, the population%level
d’ is nearly identical between models.

Figure 8:  Comparison of d’ parameters from multilevel rating model with random subject%
specific intercepts (blue) and fixed subject%specific thresholds (red). Left. Posterior means and
95%CIs of d’ from both models; estimates are comparable and rank orders are reasonably
similar. Right. Scatterplot of subject%specific d’ from the two models shows they are strongly
correlated (r = [.80, .93]). Filled point and intervals indicate the population%level d’ and its

95%CI.
Finally, to conclude this diversion to the two different ways in which the SDT models

for rating data can be estimated with regression for multiple subjects, Figure 9 shows the
predicted proportions in each response category for three subjects, along with the values
calculated from data. As shown, the model predictions are notably different for participant
19, who had no responses in the lowest category. The fixed thresholds model predicts this
(lack of) data perfectly, whereas the random intercepts model overestimates the proportions.
For participants with more well%behaved responses, the predictions are very similar.
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Figure 9:  Model%predicted response proportions from multilevel rating model with random
subject%specific intercepts (blue) and fixed subject%specific thresholds (red), along with data

(gray bars).
Moreover, Figure 9 reveals a critical difference between the models. The random%inter%

cepts model is able to make predictions at the population level (which fit reasonably well),
while the fixed thresholds does not. This is because the latter model does not estimate
population%level thresholds, but instead its estimates are limited to the subjects in the current
sample.

We now conclude the tutorial section on estimating basic signal detection theoretic
models data using (multilevel) bayesian regression models, and turn toward more advanced
SDT models.

6. Advanced SDT models

In this section, we cover the estimation of two generalizations of the SDT model, the un%
equal variances and finite mixtures models (for both single subjects and multiple individuals
using multilevel regression). As above, our focus is on practical application; readers requiring
a more theoretical treatment can refer to standard texts (Green & Swets, 1966; Macmillan &
Creelman, 2005; Wickens, 2001); a more complete mathematical treatment is DeCarlo (2010).

6.1. Unequal variances

The models discussed above have all assumed that the latent evidence distributions
associated with signal and noise trials have the same variability. Accordingly, in more general
treatments, the model above is known as the equal variance SDT (EVSDT) model. However,
when tested, this assumption is consistently found inadequate: Experiments have repeatedly
shown that the signal distribution has greater variance than the noise distribution in a wide
variety of subject domains. For example, Koen et al. (2013) reported increased signal distrib%
ution variability across four memory experiments.

A generalization of the EVSDT model, the unequal variance (UVSDT) model adds one
parameter to estimate the signal distribution’s variance. Recall that it is always assumed that
the noise distribution has a standard deviation of 1. Importantly, we cannot estimate this
additional parameter for binary outcomes (Yes/No task), and so below focus on the rating data.

The UVSDT model, for one participant’s data, is a generalization of Equation 5
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𝑃𝑟(𝑟𝑖 = 𝑘) = Φ(𝑐𝑘 − 𝜂𝑖
𝜎𝑖

) − Φ(𝑐𝑘−1 − 𝜂𝑖
𝜎𝑖

) (8)

This model—also knows as a probit model with heteroscedastic error (e.g. DeCarlo (2010))
—can be readily estimated with the brms R package (Bürkner, 2017; Bürkner & Vuorre, 2019).
Before we do so, we note that brms parameterizes this model with an equivalent formulation
using different terminology, in line with conventions in item response theory (Bürkner, 2021):

𝑃𝑟(𝑟𝑖 = 𝑘) = Φ(disc𝑖 × (𝑐𝑘 − 𝜂𝑖)) − Φ(disc𝑖 × (𝑐𝑘−1 − 𝜂𝑖))
𝜂𝑖 = 𝛽1𝑠𝑖

log (disc𝑖) = 𝛽2𝑠𝑖

(9)

In this parameterization, 𝜎 = 1/ disc. We highlight this conversion below, when post%
processing the model’s estimates. The brms syntax to estimate this model is similar to that
of Listing 8, but we include an additional regression formula to predict disc. To do so, we
wrap the main regression formula in bf() (used to predict the response distribution’s location
parameter), and add a regression formula for disc using lf():
Listing 11:  Estimating multiple participants’ rating data with an unequal variances cumula%

tive model.

fit_uvsdt1 <- brm(
  bf(response | weights(n) ~ stimulus) +
    lf(disc ~ 0 + stimulus, cmc = FALSE),
  family = cumulative(link = "probit"),
  data = filter(dat2, pid == 1),
  control = list(adapt_delta = .99),
  file = "cache/brm-glm-uvsdt"
)

We print the model’s summary below. Before inspecting it in detail, refer to the model
summary of the EVSDT model fitted to one subject’s rating data above. Notice that it reports
an estimate of disc, which is fixed to one if no regression model for it is specified. Below, we
obtain disc_stimulusOld, which is the discrimination parameter estimated from data.

 Family: cumulative 
  Links: mu = probit; disc = log 
Formula: response | weights(n) ~ stimulus 
         disc ~ 0 + stimulus
   Data: filter(dat2, pid == 1) (Number of observations: 12) 

Regression Coefficients:
                 Estimate Est.Error l-95% CI u-95% CI
Intercept[1]        -0.03      0.10    -0.23     0.17
Intercept[2]         0.39      0.10     0.19     0.58
Intercept[3]         0.62      0.10     0.43     0.82
Intercept[4]         0.96      0.11     0.74     1.18
Intercept[5]         1.35      0.14     1.09     1.63
stimulusOld          1.53      0.21     1.17     1.98
disc_stimulusOld    -0.20      0.16    -0.53     0.11

For a standard SDT interpretation, it is then useful to post%process the model parameters
to obtain an estimate of the signal distribution’s standard deviation (Listing 12).
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Listing 12:  Converting the log%discriminability parameter to a standard deviation.

as_draws_df(fit_uvsdt1, variable = "b_", regex = TRUE) |>
  mutate(sd_old = exp(-b_disc_stimulusOld)) |>
  summarise_draws(
    mean,
    sd,
    ~ quantile2(.x, probs = c(.025, .975))
  ) |>
  tt()

variable mean sd q2.5 q97.5

b_Intercept[1] −0.03 0.10 −0.23 0.17

b_Intercept[2] 0.39 0.10 0.19 0.58

b_Intercept[3] 0.62 0.10 0.43 0.82

b_Intercept[4] 0.96 0.11 0.74 1.18

b_Intercept[5] 1.35 0.14 1.09 1.63

b_stimulusOld 1.53 0.21 1.17 1.98

b_disc_stimulusOld −0.20 0.16 −0.53 0.11

sd_old 1.24 0.20 0.89 1.69

From above, we find an estimated signal distribution standard deviation of approximately
1.24 (posterior mean). Plotting the model’s implied distributions illustrates this graphically
(Figure 10).

Figure 10:  The unequal variance Gaussian signal detection model, visualized from the para%
meters’ posterior means. The two distributions are the noise distribution (dashed) and the
signal distribution (solid). Vertical lines are the thresholds, and d’ is indicated by the scaled

distance between the peaks of the two distributions.

6.2. UVSDT for multiple participants

Above, we fit the UVSDT model for a single subject. However, we typically want to
discuss inferences about the population, not individual subjects. Further, if we wish to discuss
individual subjects, we should place them in the context of other subjects. A multilevel model
accomplishes these goals by including both population% and subject%level parameters. We
extend the code from Listing 11 to a hierarchical model by specifying varying parameters
across participants Listing 13.

Recall from above that using |p| leads to estimating correlations among the varying
effects. There will only be one standard deviation associated with the thresholds; that is, the
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model assumes that subjects vary around the mean threshold similarly for all thresholds. We
can then estimate the model as before.
Listing 13:  Estimating multiple participants’ rating data with an unequal variances cumula%

tive model.

fit_uvsdt <- brm(
  bf(response | weights(n) ~ stimulus + (stimulus | p | pid)) +
    lf(disc ~ 0 + stimulus + (0 + stimulus | p | pid), cmc = FALSE),
  family = cumulative(link = "probit"),
  data = dat2,
  control = list(adapt_delta = .9),
  init = 0,
  file = "cache/brm-glmm-uvsdt"
)

We then display numerical summaries of the model’s parameters below.

 Family: cumulative 
  Links: mu = probit; disc = log 
Formula: response | weights(n) ~ stimulus + (stimulus | p | pid) 
         disc ~ 0 + stimulus + (0 + stimulus | p | pid)
   Data: dat2 (Number of observations: 576) 

Multilevel Hyperparameters:
~pid (Number of levels: 48) 
                                  Estimate Est.Error l-95% CI u-95% CI
sd(Intercept)                         0.32      0.04     0.25     0.41
sd(stimulusOld)                       1.00      0.13     0.78     1.28
sd(disc_stimulusOld)                  0.56      0.06     0.45     0.69
cor(Intercept,stimulusOld)            0.02      0.16    -0.28     0.34
cor(Intercept,disc_stimulusOld)      -0.08      0.15    -0.37     0.22
cor(stimulusOld,disc_stimulusOld)    -0.85      0.05    -0.93    -0.75

Regression Coefficients:
                 Estimate Est.Error l-95% CI u-95% CI
Intercept[1]        -0.88      0.05    -0.98    -0.78
Intercept[2]        -0.16      0.05    -0.26    -0.07
Intercept[3]         0.34      0.05     0.24     0.43
Intercept[4]         0.62      0.05     0.52     0.71
Intercept[5]         0.96      0.05     0.86     1.06
stimulusOld          1.63      0.16     1.33     1.94
disc_stimulusOld    -0.28      0.09    -0.45    -0.10

Let’s first focus on the Regression Coefficients: The effects for the “average person”.
Intercepts, again, indicate the thresholds used to partition the latent evidence distribution into
response categories. stimulusOld is d’, disc_stimulusOld is − log (𝜎𝑠𝑖𝑔𝑛𝑎𝑙). It is typically
useful to transform the latter to a standard deviation, as is shown in Listing 12.

6.3. Mixture SDT model

While the unequal variances SDT model fits observer data better than does the equal
variances model, it provides no explanation to why the latent variances might differ. One
explanation for this difference is that observers might, on a subset of trials, be inattentive to
the task:
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An inattentive observer dozes off, or at least drifts into reverie, on some proportion of
trials; because failing to respond is usually discouraged,this leads to an unknown num%
berof d′=0 trials,ones on which the observer responds despite not having paid attention,
mixed in with the others (Macmillan & Creelman, 2005, p. 46)

In this section, I briefly outline how the mixture SDT model discussed in DeCarlo (2010)
can be fit with brms. Substituting 𝜆 in DeCarlo (2010) (eqn. 19, p. 309) with 𝜃, in line with how
brms labels it, we can write the model as a mixture of two cumulative models (Equation 10).

𝑃𝑟(𝑟𝑖 = 𝑘) = 𝜃(Φ(𝑐𝑘 − 𝜂𝑖) − Φ(𝑐𝑘−1 − 𝜂𝑖)) +
1 − 𝜃(Φ(𝑐𝑘) − Φ(𝑐𝑘−1))

(10)

The above equation is a mixture of two processes. The main process includes a predictor
(𝜂) and thus allows for an effect of stimulus, and the second process omits the predictor: On
inattention trials there can be no effect of the stimulus as it was not attended to. We translate
this model to brms’ syntax in Listing 14. The key addition here is the inclusion of two response
distributions (family = mixture(), nmix = 2), and the inclusion of stimulus predictor in
modeling only the first of these.

Listing 14:  Estimating a mixture SDT model for one participant.

fit_mix1 <- brm(
  bf(
    response | weights(n) ~ 1,
    mu1 ~ 1 + stimulus,
    mu2 ~ 1,
    family = mixture(cumulative("probit"), nmix = 2, order = "mu")
  ),
  data = filter(dat2, pid == 1),
  control = list(adapt_delta = 0.9),
  file = "cache/fit-mix1"
)

I show results of this model below. First, although the summary reports two vectors
of thresholds, one for each response distribution in the mixture, they are automatically con%
strained to equality (mu1_Intercept[1] = mu2_Intercept[1]; see ?mixture), as we wanted
for this model. Second, mu1_stimulusOld is d’; the effect of stimulus for the first response
distribution mu1—notice that there is no effect for the second distribution (mu2).

 Family: mixture(cumulative, cumulative) 
  Links: mu1 = probit; disc1 = identity; mu2 = probit; disc2 = identity;
theta1 = identity; theta2 = identity 
Formula: response | weights(n) ~ 1 
         mu1 ~ 1 + stimulus
         mu2 ~ 1
   Data: filter(dat2, pid == 1) (Number of observations: 12) 

Regression Coefficients:
                 Estimate Est.Error l-95% CI u-95% CI
mu1_Intercept[1]    -0.05      0.10    -0.25     0.14
mu1_Intercept[2]     0.37      0.10     0.17     0.57
mu1_Intercept[3]     0.61      0.11     0.41     0.82
mu1_Intercept[4]     0.95      0.11     0.74     1.18
mu1_Intercept[5]     1.33      0.13     1.08     1.59
mu2_Intercept[1]    -0.05      0.10    -0.25     0.14
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mu2_Intercept[2]     0.37      0.10     0.17     0.57
mu2_Intercept[3]     0.61      0.11     0.41     0.82
mu2_Intercept[4]     0.95      0.11     0.74     1.18
mu2_Intercept[5]     1.33      0.13     1.08     1.59
mu1_stimulusOld      1.68      0.24     1.25     2.15

Further Distributional Parameters:
       Estimate Est.Error l-95% CI u-95% CI
disc1      1.00      0.00     1.00     1.00
disc2      1.00      0.00     1.00     1.00
theta1     0.86      0.08     0.70     0.99
theta2     0.14      0.08     0.01     0.30

By default, this model has fixed the latent variances at 1 (disc1 = disc2 = 1). But now
we have two additional parameters theta1 that index the mixture proportions. We see that
participant 1′s responses are a mixture of ~86% attended trials, and ~14% non%attended trials
(posterior means). For more details on interpreting this model, see DeCarlo (2010).

6.4. Multilevel mixture SDT model

After estimating the mixture model for one participant, we now turn to estimating it for
a sample of individuals using a multilevel model. The syntax (Listing 15) is identical to that
in Listing 14, but we now include by%person random effects on the parameters.
Listing 15:  Estimating a mixture SDT model for multiple participants with a multilevel model.

fit_mix <- brm(
  bf(
    response | weights(n) ~ 1,
    mu1 ~ 1 + stimulus + (1 + stimulus | p | pid),
    mu2 ~ 1,
    theta2 ~ 1 + (1 | p | pid),
    family = mixture(cumulative("probit"), nmix = 2, order = "mu")
  ),
  data = dat2,
  control = list(adapt_delta = 0.95),
  file = "cache/fit-mix"
)

I print the summary of this model’s results below. In addition to Multilevel Hyperpara%
meters (the parameters’ heterogeneities in the population), we now have an estimate of the
average mixing proportion of the second component theta2_Intercept, but this is reported
on scale of the link function (logits).

 Family: mixture(cumulative, cumulative) 
  Links: mu1 = probit; disc1 = identity; mu2 = probit; disc2 = identity;
theta1 = identity; theta2 = identity 
Formula: response | weights(n) ~ 1 
         mu1 ~ 1 + stimulus + (1 + stimulus | p | pid)
         mu2 ~ 1
         theta2 ~ 1 + (1 | p | pid)
   Data: dat2 (Number of observations: 576) 

Multilevel Hyperparameters:
~pid (Number of levels: 48) 
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                                      Estimate Est.Error l-95% CI u-95% CI
sd(mu1_Intercept)                         1.82      0.19     1.49     2.21
sd(mu1_stimulusOld)                       0.86      0.15     0.64     1.20
sd(theta2_Intercept)                      1.98      0.34     1.43     2.74
cor(mu1_Intercept,mu1_stimulusOld)       -0.43      0.25    -0.79     0.15
cor(mu1_Intercept,theta2_Intercept)       0.64      0.14     0.30     0.85
cor(mu1_stimulusOld,theta2_Intercept)     0.05      0.22    -0.36     0.49

Regression Coefficients:
                 Estimate Est.Error l-95% CI u-95% CI
mu1_Intercept[1]    -0.05      0.04    -0.13     0.03
mu1_Intercept[2]     0.84      0.05     0.74     0.94
mu1_Intercept[3]     1.50      0.05     1.39     1.61
mu1_Intercept[4]     1.87      0.06     1.76     1.98
mu1_Intercept[5]     2.32      0.06     2.21     2.43
mu2_Intercept[1]    -0.05      0.04    -0.13     0.03
mu2_Intercept[2]     0.84      0.05     0.74     0.94
mu2_Intercept[3]     1.50      0.05     1.39     1.61
mu2_Intercept[4]     1.87      0.06     1.76     1.98
mu2_Intercept[5]     2.32      0.06     2.21     2.43
theta2_Intercept    -3.44      0.46    -4.36    -2.62
mu1_stimulusOld      1.87      0.23     1.42     2.33

Further Distributional Parameters:
      Estimate Est.Error l-95% CI u-95% CI
disc1     1.00      0.00     1.00     1.00
disc2     1.00      0.00     1.00     1.00

Therefore, we transform the population%level and individual%specific mixture proportions
from the logit space to proportions, and then display the estimates in Figure 11.

Figure 11:  Mixing proportions for each participant (empty) and the population (filled).

7. Conclusion

Signal Detection Theory is “one of the greatest successes of mathematical psychol%
ogy” (Wickens, 2001). It is used to guide theorizing and data analyses in a wide variety of
research areas in psychology where the experimental tasks involve detecting, or indicating
one’s confidence in, the presence of a signal. Those “signals” can be previously seen images or
words, perceptual stimuli corrupted by noise, marks of illness, and more. The theory itself is
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established and further made accessible in widely read texts (Green & Swets, 1966; Macmillan
& Creelman, 2005).

While many SDT models are accessible to researchers via well%known computational
formulas (Stanislaw & Todorov, 1999), those don’t always easily generalize to more complex
research designs, and can ignore important sources of variability (Rouder et al., 2007; Rouder
& Lu, 2005). Moreover, these calculations introduce added complexity to researchers, who do
not always recognize that the models can be estimated with standard tools, such as General%
ized Linear (Mixed) Models [GLMM; DeCarlo (1998); Decarlo (2003)] that are straightforward
to generalize to more complex research designs.

My aim with this tutorial was to provide an introduction to how the GLMM can be used to
estimate a variety of SDT models, ranging from single%subject analyses to multilevel mixture
models that account for attention lapses, using bayesian regression methods implemented in
the brms R package (Bürkner, 2017; R Core Team, 2025).

8. Appendices

8.1. Additional SDT metrics

Above, we discussed the common SDT metrics c and d’ that index a respondent’s bias and
sensitivity, respectively. Here, we discuss some additional metrics that are commonly used in
the SDT literature. The hit and false alarm rates, and their corresponding z%scores, are used
in the manual calculation of these metrics, but can be useful in their own right. From the
modeling perspective, these rates are outcomes, and we can therefore use methods to predict
them from the model. In Listing 16, we use functions from the tidybayes package (Kay, 2024).
I show the results of these calculations in Table 7.

Listing 16:  Calculate predicted rates from a single subject’s model.

# Predict outcomes for these predictors
x <- tibble(stimulus = c("New", "Old"))

# Predicted rates
rates <- epred_draws(fit_glm, x, value = "rate") |>
  mean_qi()

# Predicted z-scored rates
z_rates <- linpred_draws(fit_glm, x, value = "rate") |>
  mean_qi()

Table 7:  Model%predicted hit (stimulus=Old) and false alarm (stimulus=New) rates of
responding ‘Old’.

Type stimulus rate .lower .upper

Rates New 0.27 0.20 0.34

Rates Old 0.77 0.70 0.84

zRates New −0.62 −0.84 −0.42

zRates Old 0.75 0.52 0.98

8.2. Including predictors

Do the EVSDT parameters differ between groups of people? How about between condi%
tions, within people? To answer these questions, we would repeat the manual calculation
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of parameters as many times as needed, and then draw inference by “submitting” the
subject%specific parameters to e.g. an ANOVA model. The GLMM approach affords a more
straightforward solution to including predictors: We simply add parameters to the regression
model.

For example, if there were two groups of participants, indexed by variable group in data,
we could extend the brms GLMM syntax to:

brm(response ~ stimulus * group + (stimulus | pid), ...)

This model would have two additional parameters: group would describe the difference
in c between groups, and the interaction term stimulus:group would describe the difference
in d’ between groups. If we were additionally interested in the effects of condition, a within%
subject manipulation, we could write:

brm(response ~ stimulus * group * condition + (stimulus * condition |
pid), ...)

8.3. Receiver operating characteristic

The Receiving Operator Characteristic (ROC) curve displays hits as a function of false
alarms, for possibly multiple criteria, and is a useful description of detection data in its own
right. As such, it is useful to be able to generate ROC curves implied by the model. Here,
we illustrate how to obtain ROC curves from fitted models with uncertainty estimates and
overlay them on raw data.

First, I show code for calculating (z%scored) hit and false alarm rates both from data, and
as predicted from the multilevel equal variances cumulative model (Listing 17).
Listing 17:  Calculating (z%scored) hit and false alarm rates from data and model predictions,

at the population level and that of individual subjects.

# Population level rates
roc_dat <- left_join(
  # From model (posterior means)
  dat2 |>
    distinct(stimulus) |>
    add_epred_draws(fit_evsdt, re_formula = NA) |>
    mean_qi() |>
    mutate(
      response = as.integer(.category),
      pid = "Population"
    ) |>
    select(pid, stimulus, response, .epred),
  # From data
  dat2 |>
    summarise(
      pid = "Population",
      n = sum(n),
      .by = c(stimulus, response)
    ) |>
    mutate(p = n / sum(n), .by = stimulus),
  by = c("pid", "stimulus", "response")
)

# Subject-level rates
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roc_sub <- left_join(
  # From model
  dat2 |>
    distinct(pid, stimulus) |>
    add_epred_draws(fit_evsdt) |>
    mean_qi() |>
    mutate(response = as.integer(.category)) |>
    select(pid, stimulus, response, .epred),
  # From data
  dat2 |>
    summarise(
      n = sum(n),
      .by = c(pid, stimulus, response)
    ) |>
    mutate(p = n / sum(n), .by = c(pid, stimulus)),
  by = c("pid", "stimulus", "response")
)

# Combine population- and subject level data, and calculate cumulative
rates
roc_dat <- bind_rows(
  roc_dat,
  roc_sub
) |>
  select(-n) |>
  pivot_longer(c(.epred, p)) |>
  pivot_wider(names_from = stimulus, values_from = value) |>
  # Cumulate proportions from high to low response category
  arrange(pid, desc(response)) |>
  mutate(
    hr = cumsum(Old),
    fr = cumsum(New),
    zhr = qnorm(hr),
    zfr = qnorm(fr),
    .by = c(pid, name)
  )

Having calculated the hit and false alarm rates in both their natural and probit scales, all
that is left to do is to plot them. In Figure 12, we show these rates for a sample of participants,
and the population. While interpreting these figures, it is important to keep in mind that the
data%based coordinates have error in both the x% and y%axes.
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Figure 12:  Receiver operating characteristic plots in the proportion (left) and z%score scales
(right) for three participants and the population. Black symbols and lines are coordinates

calculated from data, red symbols are model%predicted rates.
Next, we draw a more complete picture by using the model to predict (z%scored) hit

rates for the entire range of hypothetical false alarm rates. We obtain the predicted ROC
curves from the multilevel EVSDT, UVSDT, and mixture models at both the population% and
participant%specific levels.
Listing 18:  Calculating predicted ROC curves from multilevel EVSDT, UVSDT, and mixture

models.

grid <- tibble(
  x = seq(-2, 2, length.out = 31),
  fr = pnorm(x, lower = FALSE),
  zfr = qnorm(fr)
)
WIDTHS <- seq(.1, .9, by = .1)

# EVSDT ROC estimates
# Stack population-level and subject-specific estimates
roc_evsdt <- bind_rows(
  spread_draws(
    fit_evsdt,
    b_stimulusOld
  ) |>
    mutate(pid = "Population"),
  spread_draws(
    fit_evsdt,
    r_pid[pid, parameter],
    b_stimulusOld
  ) |>
    filter(parameter == "stimulusOld", pid %in% pids) |>
    ungroup() |>
    mutate(
      # Calculate subject-specific estimate from mean and deviation
      b_stimulusOld = b_stimulusOld + r_pid,
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      pid = as.character(pid)
    )
) |>
  # Cross with ROC data grid
  crossing(grid) |>
  # Calculate hit rate from parameters and fixed false-alarm rate from grid
  mutate(
    hr = pnorm(x, b_stimulusOld, 1, lower = FALSE),
    zhr = qnorm(hr)
  ) |>
  group_by(pid, fr, zfr) |>
  mean_qi(hr, zhr, .width = WIDTHS)

# UVSDT
roc_uvsdt <- bind_rows(
  spread_draws(
    fit_uvsdt,
    b_stimulusOld,
    b_disc_stimulusOld
  ) |>
    mutate(
      b_sd = exp(-b_disc_stimulusOld),
      pid = "Population"
    ),
  spread_draws(
    fit_uvsdt,
    r_pid[pid, parameter],
    r_pid__disc[pid, parameter],
    b_stimulusOld,
    b_disc_stimulusOld
  ) |>
    filter(parameter == "stimulusOld", pid %in% pids) |>
    ungroup() |>
    mutate(
      b_stimulusOld = b_stimulusOld + r_pid,
      b_disc_stimulusOld = b_disc_stimulusOld + r_pid__disc,
      b_sd = exp(-b_disc_stimulusOld),
      pid = as.character(pid)
    ),
) |>
  crossing(grid) |>
  mutate(
    hr = pnorm(x, b_stimulusOld, b_sd, lower = FALSE),
    zhr = qnorm(hr),
    zfr = qnorm(fr)
  ) |>
  group_by(pid, fr, zfr) |>
  mean_qi(hr, zhr, .width = WIDTHS) |>
  tibble()

# Mixture ROC
roc_mix <- bind_rows(
  spread_draws(
    fit_mix,
    b_mu1_stimulusOld,



Regression SDT models 33

    b_theta2_Intercept
  ) |>
    mutate(
      pid = "Population",
      b_theta2_Intercept = plogis(b_theta2_Intercept)
    ) |>
    select(pid, .draw, starts_with("b_")),
  spread_draws(
    fit_mix,
    b_mu1_stimulusOld,
    b_theta2_Intercept,
    r_pid__mu1[pid, parameter] | parameter,
    r_pid__theta2[pid, parameter]
  ) |>
    filter(pid %in% pids) |>
    mutate(
      b_mu1_stimulusOld = b_mu1_stimulusOld + stimulusOld,
      b_theta2_Intercept = plogis(b_theta2_Intercept + r_pid__theta2),
      pid = as.character(pid)
    ) |>
    ungroup() |>
    select(pid, .draw, starts_with("b_"))
) |>
  crossing(grid) |>
  mutate(
    hr = (1 - b_theta2_Intercept) *
      pnorm(x, b_mu1_stimulusOld, 1, lower = F) +
      b_theta2_Intercept * pnorm(x, 0, 1, lower = FALSE),
    zhr = qnorm(hr)
  ) |>
  group_by(pid, fr, zfr) |>
  mean_qi(hr, zhr, .width = WIDTHS) |>
  tibble()
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Figure 13:  Caption.

8.4. Tips for estimating models with brm()

Above, we made use of the file argument in brm() to save estimated models to
a file. Throughout, I have also used other options to speed up sampling, specified in a
special .Renviron file:

# Contents of .Renviron
MAX_CORES=8
BRMS_BACKEND="cmdstanr"
BRMS_THREADS=2

Then, on the top of my R code, I have specified
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options(
  brms.backend = Sys.getenv("BRMS_BACKEND", "rstan"),
  brms.threads = as.numeric(Sys.getenv("BRMS_THREADS", 1)),
  mc.cores = as.numeric(Sys.getenv("MAX_CORES", 4))
)

With these settings, every call to brm() uses the variables I have specified in .Renviron
to speed up model estimation with values that work well on my local machine (that has eight
CPU cores.) For more information, see ?brm and ?Sys.getenv.
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