
https://doi.org/10.1177/2515245918754826

Advances in Methods and
Practices in Psychological Science
﻿1–18
© The Author(s) 2018
Reprints and permissions:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/2515245918754826
www.psychologicalscience.org/AMPPS

Tutorial

Lack of reproducibility is increasingly being recognized
as a problem across scientific disciplines, and journals
in a wide range of research areas, including biology
(Markowetz, 2015), ecology (Ihle, Winney, Krystalli, &
Croucher, 2017), neuroscience (Eglen et al., 2017), and
psychology (Munafò et al., 2017), have published calls
for changing the scientific workflow to enhance repro-
ducibility. Studies suggest that one specific challenge
to reproducibility is the ways in which researchers orga-
nize, curate, share, and collaborate on their research
assets (Vanpaemel, Vermorgen, Deriemaecker, & Storms,
2015; Wicherts, Borsboom, Kats, & Molenaar, 2006). By
assets, we mean, for example, stimuli, data, and code
used to support a research article’s conclusions.

Fortunately for the empirical sciences, challenges
related to curating materials across time, space, and
collaborators have been solved to a high standard by
software referred to as version control systems (VCSs).
In this Tutorial, we introduce a popular VCS called Git
and illustrate its use in the scientific workflow with a
hypothetical example project. We show how to use Git
with a graphical user interface (GUI) in the RStudio
program (RStudio Team, 2016). We also show how to
use Git with the online service GitHub for collaborative

workflows. Using Git (and GitHub) will streamline
workflows and help researchers stay better organized,
and thereby facilitate reproducibility.

Version Control Systems

Consider a scenario in which several researchers are
collaborating on a manuscript that reports results from
an analysis of a data set. In a typical workflow, one
person might format the raw data in a specific way to
fit a particular statistical model and then write a draft
of the manuscript, in the process creating three files: a
spreadsheet with the data, a file with the computer
code for the analysis, and the manuscript. If a collabo-
rator then decided to use another statistical model,
which required the data in a different format, and then
edited the manuscript, he or she would create three
more files: new data spreadsheet, new file with the
code for the analysis, and revised manuscript. This cycle

754826 AMPXXX10.1177/2515245918754826Vuorre, CurleyThe Git Version Control System
research-article2018

Corresponding Author:
Matti Vuorre, 406 Schermerhorn Hall, 1190 Amsterdam Ave. MC 5501,
New York, NY 10027
E-mail: mv2521@columbia.edu

Curating Research Assets: A Tutorial
on the Git Version Control System

Matti Vuorre1 and James P. Curley1,2

1Department of Psychology, Columbia University, and 2Department of Psychology, University of
Texas at Austin

Abstract
Recent calls for improving reproducibility have increased attention to the ways in which researchers curate, share, and
collaborate on their research assets. In this Tutorial, we explain how version control systems, such as the popular Git
program, support these functions and then show how to use Git with a graphical interface in the RStudio program.
This Tutorial is written for researchers with no previous experience using version control systems and covers both
single-user and collaborative workflows. The online Supplemental Material provides information on advanced Git
command-line functions. Git presents an elegant solution to specific challenges to curating, sharing, and collaborating
on research assets and can be implemented in common workflows with little extra effort.

Keywords
reproducibility, version control, Git, research methods, open science, open materials

Received 6/26/17; Revision accepted 11/14/17

mailto:mv2521@columbia.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2515245918754826&domain=pdf&date_stamp=2018-04-11

2	 Vuorre, Curley

would then be repeated as many times as required;
each time more files would be created, and it would
become increasingly difficult for the authors to remem-
ber which data were paired with which analysis, and
which analyses were reported in which version of the
manuscript.

With a VCS, the project would contain three files
only (one each for the data, analysis, and manuscript).
The VCS would keep track of changes to the files and
their different versions, therefore removing the need
for new files for every new idea or edit. This lack of
duplication, in turn, would likely reduce errors in
remembering which data file was linked with which
analysis, which manuscript version had the correct
numerical results, and so forth. Box 1 shows additional
examples of how VCSs can improve the scientific work-
flow. In the Discussion section, we compare Git, as a
representative VCS, with other common workflow tools.

VCSs were initially developed for writing code col-
laboratively,1 but are increasingly being adopted to
enhance workflows outside computer science. To
understand why, it is helpful to think of code more
broadly as any text written on a computer: Manuscripts,
statistical analysis scripts, source code of computerized
experiments, and even data files are code, or have
source code. Code is just plain text written on a com-
puter, and when we use the word code in this Tutorial,
we mean it in this broad sense (e.g., this manuscript’s
source code was written on a computer and was version
controlled). Furthermore, metadata, stimuli, study notes,
and other research documents often go through mul-
tiple revisions and could therefore benefit from being
version controlled.

For example, a computerized experiment’s source
code (text written by humans but interpreted by com-
puters to, e.g., display stimuli to participants) may have
multiple authors and go through multiple versions. The
problems inherent to keeping track of these versions

and changes, and allowing many authors to contribute
(without introducing errors to the experimental pro-
gram’s code), are problems that VCSs were specifically
designed to handle. Writing manuscripts collaboratively
is quite similar, at least as far as the computer is con-
cerned: Multiple authors write multiple versions of a
text document, sometimes needing to inspect previous
versions, and the text needs to be merged across these
authors. Even data sets can be considered as plain-text
code: In most computerized experiments, the output
data are numbers and text written into a text file.
Researchers would usually not want to see that their
raw data files were changed after they were created,
and VCSs make it possible to verify that they have not
changed because their history is preserved.

The core concept of version control is that contribu-
tors to a project keep track of the changes they make
to the source code by saving the files they have made
changes to and then saving those revised files to the
VCS’s history. (This process is analogous to saving an
intermediate version of a file on a computer’s hard disk.
Indeed, in order to submit a file to a VCS’s history, one
must first save it on disk.) The VCS maintains a history
of changes to the code between the various versions
of the files that were saved to its history and therefore
allows users to return to any earlier version by brows-
ing the history. Figure 1 illustrates these concepts by
outlining the typical Git workflow. Git and GitHub ter-
minology is explained in more detail in Box 2.

The Git Version Control System

Version control software has a long history in software
engineering, and there are many VCS programs. Some
popular ones are Apache Subversion (https://subver
sion.apache.org/), Mercurial (https://www.mercurial-
scm.org/), and Git (https://git-scm.com/2). In this Tuto-
rial, we focus on Git because it is increasing in popularity

Box 1.  How Git Facilitates the Scientific Workflow

•  Collaborators can share work easily, safely, and in an organized manner.
Git enforces a common organizational scheme among collaborators, making it easier to keep everyone “on the same
page” with what goes where and how to contribute to specific parts of the project. Git projects are shared as a whole, so
complex projects with multiple files linking to each other are easy to share. Sharing projects with other researchers is built
into Git and can be facilitated with online services such as GitHub. A project that uses Git can be easily copied to GitHub,
and other researchers can download the entire project from GitHub onto their local computers.

•  Users can try different ways of visualizing data while keeping track of the variants.
Git saves a file’s current version whenever that is requested, so new features can be tested without losing previous
versions or increasing the number of files in a project’s directories. Any past version can be retrieved from Git’s history.

•  Multiple collaborators can work on the same files at the same time.
Collaborators work on the project locally, sending material to and receiving material from a central copy of the project.
Git keeps track of who has done what, when, and why (if users add a commit message). Git never loses information or
overwrites work unless asked to do so, but allows for collaborators to work on the same ideas simultaneously.

https://subversion.apache.org/
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
https://git-scm.com/

The Git Version Control System	 3

within the scientific community and is especially good
for scientific collaboration because of its online tools
that allow seamless collaboration even for very large
research teams. Further, Git is free and open source,
and it works on Windows, Mac, and Linux operating
systems (among others).

Most computer users are already familiar with creat-
ing, copying, and deleting files and folders on their
computers using the operating system’s default file
viewer (Mac’s Finder, Windows’ File Explorer). Git adds
functionality to the computer’s file system by making

available a set of commands—executed either from a
point-and-click GUI or from the computer’s command
line—that allow users to keep track of files and their
history and to distribute files across multiple computers
and users. Git does not move or change the files or
folders in any way: Users interact with their files as they
would without Git, but instead of creating a new file
each time they make important changes, they can use
Git to save the file’s current state to Git’s history; sub-
sequently, they can retrieve each of these versions of
the file as needed.

Local Working
Directory

Add to Staging Area (or Stage)

Checkout From History When Needed

Commit Changes to History

Staging Area
History

(.git Directory)

Fig. 1.  A diagram illustrating the typical Git workflow. Verbs in boldface are Git operations.
In brief, this workflow begins with working in a local directory to make changes to a file
in a project (e.g., editing a manuscript) and then adding the changed file to the staging
area. Many files can be added to the staging area, if desired. The user can then commit
the changes to Git’s history. A commit can be accompanied by a short commit message
that describes the changes made. When required, files’ older versions can be retrieved by
checking them out from Git’s history. These terms and operations are explained in more
detail in the main text. This figure was adapted from Figure 6 at https://git-scm.com/
book/en/v2/Getting-Started-Git-Basics.

Box 2.  Main Git and GitHub Operations and Terms

Git repository: a folder whose contents are tracked by Git. Changes within this folder can be saved to Git’s history. Git
repositories are located on users’ computers and are therefore also called local repositories.
GitHub repository: a Git repository hosted on GitHub. GitHub repositories can be set to receive changes from local
repositories, so that multiple users can work on the same project by connecting their local repositories to the GitHub
repository, which is also called a remote or central repository.
Initialize a local repository: an operation that creates a local Git repository on a computer.
Clone a remote repository: an operation that creates a local Git repository by copying a remote repository (e.g., one hosted
on GitHub).
Add changes: an operation that adds a changed version of a file to Git’s staging area. The fact that only changes that are
added to the staging area can be committed allows for control over what is saved in Git’s history. For instance, if a user wants
to make changes to file X, but not changes to File Z, part of a project’s history, X can be added to the staging area without
adding Z.
Commit changes: an operation that creates a snapshot of the project’s current state by saving changes from the staging area
to Git’s history. A commit can include a short message describing the commit’s purpose.
Git history: a list of all the commits made in the repository.
Checkout: switch to an earlier version of the project by “checking it out” from Git’s history.
Push committed changes: an operation that sends changes made on a user’s local repository to the central (remote)
repository.
Pull changes: an operation that brings changes from the central (remote) repository to a user’s local repository, to keep it
up-to-date with other collaborators’ changes.

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

4	 Vuorre, Curley

Installing Git

Even if you already have Git installed on your com-
puter, it is good practice to install the latest version (as
of the writing of this article, Version 2.16.2), which can
be downloaded from https://git-scm.com/download.
Because Git is a stand-alone program, it is easy to install
by simply downloading the installer and following the
on-screen instructions. If you are a Mac user, the easiest
way to install or update Git is to download the installer
from http://git-scm.com/download/mac and install Git
as you would any other program. Similarly, if you are
a Windows user, you can download the Git software
installer from http://git-scm.com/download/win and
install Git as you would any other application. If you
are a Linux (or other) user, you should look at the
instructions on the Git Web site (https://git-scm.com/
book/en/v2/Getting-Started-Installing-Git).

After the Git software has been installed, its functions
are available to the computer’s users through various
Git clients. In this Tutorial, we show how to use Git
with RStudio. We present instructions for using Git from
the command line in the Supplemental Material avail-
able online.

Disclosures

The Git repository for this manuscript, which includes
its source code, can be accessed at https://github.com/
mvuorre/reproguide-curate. The materials are also
stored on the Open Science Framework, at https://osf
.io/txgn8/. A Git repository for this Tutorial’s hypotheti-
cal example project can be found at https://github.com/
mvuorre/git-example. The Supplemental Material dis-
cusses using Git (and GitHub) from the command line
and can be accessed at https://github.com/mvuorre/
reproguide-curate/blob/master/manuscript/supple
ment.pdf or http://journals.sagepub.com/doi/suppl/10
.1177/2515245918754826.

Fundamentals of Git

The first operating principle of Git is that your work is
organized into independent projects, which Git calls
repositories.3 A repository is a folder on your computer
that is version controlled by Git,4 and it can itself con-
tain subfolders. Everything that happens inside a repos-
itory is tracked by Git, but you have full control of what
is committed to Git’s history and when. Because you
have this full control, there is a small set of operations
you need to know. As a new user of Git, you will find
it helpful to tape a Git-command cheat sheet (https://
services.github.com/on-demand/resources/cheat
sheets/) on your wall, but note that this sheet contains

many more commands than are needed for the basic
use of Git in standard psychology studies.

Briefly, when you work in a Git repository (i.e., make
changes to files within it), Git monitors the state of all
the files, and when they change, Git knows that they
differ from their previously logged state. If you are
happy with the current changes, you add the changed
files to Git’s staging area (i.e., you stage them). If you
then are certain that the changes in the staging area are
desirable, you commit the changes. These two opera-
tions are the backbone of using Git to store the state
of the project whenever meaningful changes are made
(Fig. 1). Each commit in the repository’s history con-
tains information to recover the full state of the project
at that point in time. Users can always go back to an
earlier version by checking out a previous state from
Git’s history.

To explain the Git workflow in practice, we now turn
to a practical example of working on a hypothetical
project using RStudio. Git can be added to a project at
any stage of the project’s life cycle, but to most clearly
show its use, we begin with an empty project.

RStudio

RStudio (RStudio Team, 2016) is an integrated develop-
ment environment (IDE) for the R programming lan-
guage (R Core Team, 2017).5 It is free and open source;
works on Windows, Mac, and Linux operating systems;
and can be downloaded from the project’s Web site
(https://www.rstudio.com/products/rstudio/down
load/). RStudio incorporates tools that are useful
throughout the scientific research cycle, including tools
for organizing projects, analyzing data, and writing
manuscripts. To these ends, RStudio also includes a
graphical interface for using Git.

Creating the example project

Implementing reproducibility into the scientific work-
flow is less time-consuming and effortful if it is planned
from the onset of a project, rather than added to the
project after all the work has been completed. One of
the early steps that can be taken to facilitate reproduc-
ibility is to organize and label files and folders as clearly
as possible (here, we loosely follow guidelines such as
the Project TIER, n.d., recommendations). For example,
files and folders should have easy-to-understand names
(i.e., idiosyncratic naming schemes should be avoided),
and the names should indicate the purposes of the files
and folders. Following these practices will help poten-
tial collaborators (and yourself) find files you need
quickly and reliably. We illustrate some additional good
and not-so-good practices in Figure 2.

https://git-scm.com/download
http://git-scm.com/download/mac
http://git-scm.com/download/win
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/mvuorre/reproguide-curate
https://github.com/mvuorre/reproguide-curate
https://osf.io/txgn8/
https://osf.io/txgn8/
https://github.com/mvuorre/git-example
https://github.com/mvuorre/git-example
https://github.com/mvuorre/reproguide-curate/blob/master/manuscript/supplement.pdf
https://github.com/mvuorre/reproguide-curate/blob/master/manuscript/supplement.pdf
https://github.com/mvuorre/reproguide-curate/blob/master/manuscript/supplement.pdf
http://journals.sagepub.com/doi/suppl/10.1177/2515245918754826
http://journals.sagepub.com/doi/suppl/10.1177/2515245918754826
https://services.github.com/on-demand/resources/cheatsheets/
https://services.github.com/on-demand/resources/cheatsheets/
https://services.github.com/on-demand/resources/cheatsheets/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

The Git Version Control System 5

 A project’s folder should have an immediately rec-
ognizable name and should be placed somewhere on
the computer where it can be easily found. We call the
example project (and therefore its home folder) “git-
example.” Because the folder structure on a computer
is easy to think of as a tree, a project’s home folder—or
any folder that has subfolders—is also known as the
root directory. To start the new project with RStudio,
open the RStudio application, and click on “File” and
then “New Project.” 6 This brings up a dialogue (left
panel in Fig. 3) asking whether you want to create a
project in a new directory, create a project in an exist-
ing directory, or retrieve (checkout) an existing project
from a version control repository. We want to create
our example project in a new directory, so after clicking
on “New Directory,” we choose “New Project” (middle
panel in Fig. 3 ; old RStudio versions may instead call
this “Empty Project”). In the screen that follows (right
panel in Fig. 3), we give a name to the project’s home
folder (“git-example”) and choose where to save it on
the computer. We also check the “Create a git reposi-
tory” box, which will automatically set up a new reposi-
tory for the project. Clicking “Create Project” then
creates the project’s main folder in the specified loca-
tion, as well as two files inside that folder. One of these

files is .gitignore, which we discuss in more detail later.
The other file is git-example.Rproj; the extension indi-
cates that the folder is the home folder for an R (RStudio)
project. Users will not interact with this file directly, but
it is a plain-text file containing the project’s settings
(these can be modified by clicking on “Tools” and then
“Project Options” in RStudio).

 Now that the R project has been created, RStudio has
a Git panel in the top right portion of the GUI (Fig. 4).
This panel shows the two new files in the repository
and buttons for the main Git commands. Because the
project’s main folder has been initialized as a Git reposi-
tory, Git will monitor any changes within the folder and
allow you to add and commit these changes.

 Adding files to Git

 To mark this milestone in creating the project, you can
commit all the changes so far to Git. To do this, click
on “Commit” in the Git panel. This will bring up another
window (Fig. 5), where you can select files to add to
the staging area. The two new files in the repository
are initially flagged by yellow question marks in the
Status column. To add these new files to Git’s staging
area, select the radio buttons in that column. This files’

 Fig. 2. Examples of good and bad practices in organizing files and folders. Bad practices (left panel) include
having multiple versions of a given file. When there are multiple versions, collaborators may, for example,
accidentally use the wrong data for analysis or forget which version they used. It is better to organize a project
in subfolders with meaningful names and to have only one file per purpose (right panel).

6	

Fig. 4.  Screenshot of RStudio’s Git panel for the newly created example project. This panel shows the two
files that were created when the project was started and the buttons for the “Commit” and “Diff” commands
(“Diff” is used to identify the differences between two versions of a file).

Fig. 3.  Creating a project in RStudio. To create a new project in a new directory, click on “New Directory” (left panel) and then “New Project” (middle panel). The final step is to
name the directory and indicate where it should be saved on the computer (right panel). There is also an option to create a Git repository for the project.

The Git Version Control System	 7

status is now shown as an “A” on a green background
(see Fig. 5). The screenshot in Figure 5 shows how this
window looks if you then select the .gitignore file. The
text in the pale-green section at the bottom of this
window indicates the lines of text that were changed
in the selected file. All the lines of text in this file show
up in this section because the file is new to Git and
therefore each line is an addition (change) to the file
(we discuss the contents of this file in more detail later).

You have now added the files to Git’s staging area
and can commit the files to Git’s history. Before clicking
on “Commit,” write a short message in the “Commit

message” box, describing what changed and why.
These messages will be important when you later
browse the history of your repository. After you click
on the “Commit” button, a window summarizing the
commit’s changes will pop up (Fig. 6).

Every project (repository) should contain a brief note
explaining what the project is about and whom to con-
tact for more information. This note is usually called a
readme file, and therefore your first proper contribution
to this project will be a README file.7 Although it might
seem odd to document such trivia when working solo
on a project, it will be easier for you and other people

Fig. 5.  Screenshot showing RStudio’s Git panel for the example project after the first two files have
been added to the staging area. Note that the bottom section of the window displays the changes in the
.gitignore file, because it has been selected. An explanatory message has been typed in the “Commit
message” box, in preparation for committing the files.

Fig. 6.  Illustration of Git’s description of changes within a commit. This commit (from Fig. 5) changed two
files and inserted a total of 17 lines of text. The rest of the information can be safely ignored for the purposes
of this example. Click on “Close” to proceed.

8	 Vuorre, Curley

(e.g., someone else continuing your project later on)
to recall what the project was about if this information
is available.

The README file should be a plain-text (.txt) file
(i.e., not created with Microsoft Word or similar soft-
ware) that can be read with a simple text editor.8 Create
this file with RStudio’s text editor (click on “File,” then
“New File,” then “Text File”), and save it to the project’s
root folder. Once you have saved the file in that folder,
it will be visible in RStudio’s Git panel (with yellow
question marks indicating that it is a new file). Once
you are happy with the README file’s contents, stage
the file by checking the radio button, write a commit
message, and click on “Commit.” This initial version of
the README file is now saved in Git’s history and can
be retrieved later. Notice also that after the commit, the
Git panel in RStudio is empty; there are no changes to
the repository since the last commit.

Keeping track of changes with Git

Git now will keep track of all and any changes to the
README file and the two other files in the git-example
project. For example, if you change the text in the
README file with RStudio’s text editor and save the

file, RStudio’s Git panel will show the README file with
a blue “M” (for “modified”) flag: Git knows that the
README file has been modified since the last commit.
It is often useful to know exactly how a file has changed
before committing it. To view differences to a file not
yet committed, click on “Commit” in the Git panel and
select the appropriate file. The bottom section of the
panel will then display the new lines of text on a green
background and the old lines of text on a red back-
ground. That is, if you make changes to a given line, the
old version of that line will be shown on the red back-
ground, and the new version will be shown on the green
background. Once you are happy with the changes, you
can repeat the add and commit steps to permanently
record the current state of the project to Git’s history.

The real importance of these somewhat abstract
steps becomes apparent when we consider Git’s history
for a project. The history contains the exact state of the
project at each commit and allows retrieval of previous
versions of files. To view a project’s Git history in
RStudio, click the “History” button in the Git panel. For
this example, suppose we have added some informa-
tion to the README file. The top section of the follow-
ing screen (Fig. 7) shows each commit’s message,
author, date and SHA key (a hash code that uniquely

Fig. 7.  RStudio display showing the Git history for the example project after changes to the README file have been commit-
ted. The top section of the display summarizes the history, and the bottom section details the changes in the selected commit.

The Git Version Control System 9

identifies the commit). The bottom section of the screen
shows more details about the selected commit, including
the actual changes made to files in that commit. In the
current example, the README file received three new
lines, shown in the green background in Figure 7 .

 Although you have now seen the fundamentals of
using Git to track the states of (and therefore changes
to) a repository, this overly simplistic example does not
allow full appreciation of the benefits of using Git for
version control. To better illustrate Git’s functioning,
we now fast-forward the hypothetical example project
to a stage at which more files and materials have been
created.

 (Slightly More) Advanced Git

 Suppose that after working for a while on the project,
you have added two files to it, and the project’s home
folder looks like Figure 8 . Viewing the Git panel in
RStudio would reveal that there are two new files (pos-
sible empty folders are ignored): One is a .pdf file with
some administrative information (ethics-info.pdf), and
the other is an R script file for a prospective power
analysis (plan_n.R). Suppose further that you would
like to track any changes to this script, but do not need
to keep track of the ethics file. Git has an elegant solu-
tion to specifying which files to keep track of. Because
by default all files are monitored, a special file tells Git
which files are to be ignored .

 Telling Git to ignore files

 Git uses a special plain-text file in the home folder of
the repository to control which files are to be ignored
by Git. RStudio creates this file, which is called .gitignore,
automatically when you create a new project with Git

enabled, and you can use a text editor to edit it (i.e.,
add or remove components to be ignored). 9 Note that
the file is hidden (by default, not visible in the operat-
ing system’s file viewer), but can be seen in RStudio’s
Files panel. Each row of text in this file specifies a file
or a folder (or a pattern of characters, referred to as a
 regular expression) that Git should ignore. In the cur-
rent example, suppose you want Git to ignore the
admin folder entirely and also to ignore any file with
the .pdf extension inside the manuscript folder. The
example file would look like this:

 .Rproj.user

 .Rhistory

 .RData

 .Ruserdata

 admin/

 manuscript/*.pdf

 The first four lines are automatically written by RStudio
when the project is created, and the fifth and sixth lines
specify the files you want to ignore.

 After you save these changes to the .gitignore file,
RStudio’s Git panel shows that the .gitignore file has
changed and that there are changes in the experiment-1
folder. To find out which files have changed in that
folder, click on the “Staged” radio button next to that
folder (see the example of the Git panel in Fig. 4), and
the display will show that the only changed file is
plan_n.R. Because there are now two files that are not
specified to be ignored in .gitignore (i.e., .gitignore and
plan_n.R), and because you usually should aim to main-
tain a clean commit history for a project, 10 you should
now create two separate commits: one for the .gitignore
file and one for the power-analysis file.

 After committing the plan_n.R file to Git’s history,
you can at any time use Git’s history to return to this
file and see what was inside at an earlier time. For
instance, if new information suggests that you should
change the assumed effect size in the power analysis,
you can simply edit and save the file, and then add and
commit the changes to Git with a helpful message that
logs this important event in Git’s history. Afterward, you
can inspect the file as it was before those changes were
made, if required.

 Accessing files’ past versions

 This possibility of “rewinding history” is especially use-
ful for files that might undergo multiple revisions (e.g.,

 Fig. 8. Screenshot of the root folder of the example project after
an ethics file and script for a power analysis have been added. Note
that the .gitignore and .Rproj files are not shown here.

10	 Vuorre, Curley

manuscripts, analysis files), or if you are interested in
when the files were created, the order in which they
were created, and who created or changed them. To
see an earlier version of a file, click the “History” button
in the Git panel11 and select the commit that contains
the version of the file that you would like to see. Then,
in the lower section of the screen, click “View file @
[the commit’s SHA code].” This will reveal the file
exactly as it was at that point in history.

Currently, RStudio’s Git panel offers limited function-
ality in rewinding history, and to our knowledge, the
best tools for accessing old versions of a project are
Git’s command line functions. In the Supplemental
Material, we discuss in detail how to retrieve old ver-
sions of files, and even old versions of an entire project,
using these functions.

Collaborating

The true advantages of using Git become apparent when
one considers projects with more than one contributor.
For example, consider a project in which data are col-
lected at multiple sites, and the data files are then saved
onto a central server, or shared through a service that
automatically merges files from multiple sources (e.g.,
the popular Dropbox service). If two or more sites acci-
dentally save a data file with the same name to the
server (or service), and these changes are then automati-
cally merged, whichever file was later will simply over-
write the earlier file. Disaster! Alternatively, consider a
data analysis involving two or more people who work
simultaneously on some complicated analysis script and

share their work using a central server or a system such
as Dropbox. If user A and user B are making changes
to the same file and user B saves the file, user A’s ver-
sion of the file will be overwritten. Disaster!

Git and other VCSs, on the other hand, were specifi-
cally designed to allow (and facilitate) multisite collabo-
ration on complex projects. For example, Microsoft
Windows is developed collaboratively on a Git platform
by about 4,000 engineers (Harry, 2017). We believe that
Git can be especially helpful in scientific collaboration.

There are many ways in which a team could collabo-
rate on a Git project; here we focus on a common one,
called centralized workflow. In this workflow, a central
(also called remote) repository is created on an online
platform. Individual users work in their local Git reposi-
tories as we have already described, but can also send
and receive changes from the central repository (see
Fig. 9).

In brief, once a user wishes to collaborate on a proj-
ect, the user creates a central repository, and connects
his or her local repository to it. Other users can then
clone their own local repositories from the central repos-
itory. The central repository exists on an online platform
(e.g., GitHub) or, for example, on a private server, and
the local repositories are on the collaborators’ own com-
puters. Contributors, including the one who created the
central repository, continue to work on their local reposi-
tories. After committing changes in their local reposito-
ries, they push their changes to the central repository, to
make the changes available to other users. To get changes
from the central repository, contributors pull changes
from it to their local repositories.

Local Working
Directory

Pull Changes From Central Repository to Local Repository

Checkout From History When Needed

Commit Changes to History

Staging Area
Local Repository
(.git Directory)

Central Repository
(e.g., GitHub Repository)

Add Changes to Staging Area

Push Local Changes to Central
Repository

Fig. 9.  A diagram illustrating the typical collaborative Git workflow with a central repository (e.g., GitHub). As when a central repository
is not involved, users work in their local repositories, making changes to files and viewing prior versions as needed. In addition, they push
changes from their local repositories to the central repository, so that collaborators have access to them, and pull changes from the central
repository to their local repositories, to see their collaborators’ work. Verbs in boldface are Git operations and explained in the main text.

The Git Version Control System	 11

Central Git repositories can be set up relatively easily
on research teams’ private servers, but because the
details vary from team to team, here we illustrate the
centralized workflow using GitHub.

Collaborating With GitHub

GitHub is one of the 100 most popular Web sites world-
wide. As of February 2018, it hosted more than 79 mil-
lion software projects with a total of more than 28
million users. For this Tutorial, we chose to focus on
GitHub for collaboration because it is already popular
among scientists who use VCSs, it offers free private
repositories to some users,12 and repositories from
GitHub can easily be connected to projects hosted on
the Open Science Framework (OSF; https://osf.io).
There are many alternatives to GitHub, such as Bit-
bucket (https://bitbucket.org/) and GitLab (https://gitlab
.com), both of which provide free private repositories
and function very similarly to GitHub. Thus, although
we focus here on GitHub as an example, switching to
another service would be relatively straightforward.

If you are a new GitHub user, you must first create
a free user account at https://github.com. You must
create the GitHub account with the same e-mail address
that you used when configuring your local Git (or
reconfigure your local Git to use the e-mail address that
you used to register for GitHub). GitHub will use your
e-mail address for authorization purposes and will use
your username to identify you as the source of your
commits. The Supplemental Material shows how to use
the command line for configuring Git.

Creating a new GitHub repository and
linking it with a local Git repository

To start collaborating on a project, you first need to
create a repository on GitHub. After you have created
a GitHub account, log into your account and click the
green “New repository” button on GitHub’s main page.
GitHub will first ask for a name for your GitHub reposi-
tory. The name can be anything, but to continue with
our example project, call the GitHub repository git-
example. After indicating the repository’s name, you
can choose whether the repository should be public or
private; we discuss this choice in more detail later, but
for now, choose “Public.” At this point, you can allow
GitHub to automatically create README, .gitignore, and
license files for your repository, but for this example,
skip this step because these files have already been
created in the local repository.

After you click on “Create repository,” the next step
is to link the new GitHub remote repository to a local

Git repository, by either creating a new local repository
from the remote repository (this is called cloning) or
connecting an existing local repository to the newly
created remote repository. Currently, RStudio allows
you to link a local Git repository to a remote repository
only when you are creating a new project in RStudio;
you cannot connect existing local Git repositories to
GitHub with RStudio. (You can connect an existing local
repository to a GitHub remote repository with two short
lines of code in the computer’s command line, and we
show how in the Supplemental Material.) Therefore,
we show here how to use RStudio to create a new
project that connects to the GitHub remote repository
you just created (Fig. 10). You need the remote reposi-
tory’s URL to set up the new project in RStudio. This
URL is visible on GitHub on the page that appeared
after you created the new repository. Copy the reposi-
tory’s URL from the address box on GitHub (the URL
will end with .git, e.g., https://github.com/username/
reponame.git). Then, in RStudio, click on “File” and
then “New Project,” and select “Version Control” (Fig.
10, left panel). This option allows you to create a new
local repository by cloning the GitHub remote reposi-
tory. Click on “Git” (Fig. 10, middle panel), then paste
the GitHub URL in the “Repository URL” box, and
choose an appropriate location on your computer for
the project (Fig. 10, right panel). Note that the full
address, including “https://,” should be pasted in the
box for the repository’s URL.

You have now associated the empty remote (GitHub)
repository with a local folder on your computer. Usually,
you would connect the local and remote repositories as
soon as a project is started. However, in this example,
you created an empty GitHub repository but had a local
repository for a project that was already started on your
local computer, so you need to copy the contents of the
old folders and paste them in the new local repository,
so that you can continue with the same materials.

Next, make sure that the contents of the old .gitignore
file have been copied to the new file. Otherwise you
will be committing files that you would rather ignore
into Git’s history. You can then commit all the files to
the new local Git repository using the steps detailed
earlier in this Tutorial. After adding and committing
some files locally, you will have two new buttons in
RStudio’s Git panel: The local repository can now send
(push) changes to and receive (pull) changes from the
remote repository. Click on “Push” and use a Web
browser to navigate to the repository’s GitHub page
and refresh the page. You will then see all the commit-
ted files and folders on GitHub. You can browse and
view the project’s files, and even make changes to them,
on the GitHub page.

https://osf.io
https://bitbucket.org/
https://gitlab.com
https://gitlab.com
https://github.com
https://github.com/username/reponame.git
https://github.com/username/reponame.git

12

 Fig. 10. Creating a new local repository by checking out a project from a GitHub repository. Click on “Version Control” (left panel) and then “Git” (middle panel). The final step
is to paste the URL for the GitHub repository in the appropriate box and indicate where the project should be saved on the local computer (right panel).

The Git Version Control System	 13

Contributing to a central (GitHub)
repository

Now that you have created a GitHub repository, other
team members need only set up Git on their own com-
puters and sign up for GitHub in order to clone the
remote repository onto their local computers, just as
you did. These users can find out the repository’s URL
by navigating their Web browsers to the repository’s
GitHub address (e.g., https://github.com/mvuorre/
reproguide-curate for this Tutorial’s repository; the
repository’s URL is the GitHub address with a .git exten-
sion) and clicking on the big green “Clone or down-
load” button; the complete address will then appear in
the text box, shown in Figure 11. Again, the full address,
including “https://,” must be pasted in the box for the
repository’s URL. After creating clones on their own
computers, new contributors can work on their local
copies of the project as detailed in earlier parts of this
Tutorial. After committing their changes, they can
update the status of the central repository by pushing
their changes to it. To push changes, they simply press
the “Push” button in RStudio’s Git panel.

Note that you can also clone GitHub repositories if
you are not aiming to contribute to a project. Hosting
projects on GitHub is useful because other people can
easily clone (download) your work to build on it.

Obtaining other people’s changes from
the central repository

Just as you must manually push your own local changes
to the remote repository, you must also obtain other
contributors’ changes by pulling them from the central
repository. Pulling is indicated in the collaborative
workflow in Figure 9 because it is important that you
start working on the most up-to-date version of the

project (e.g., you do not want to redo work that has
been completed successfully or make unnecessary con-
flicting changes). Before starting to work on potential
changes, always pull the remote changes by pressing
the “Pull” button in RStudio’s Git panel.

Resolving conflicts in GitHub

The way in which users and their local repositories
interact with the central repository by pushing and
pulling is the cornerstone of collaboration on GitHub,
and thoughtful use of these operations allows for com-
plex workflows without any important code (data, ideas
in a manuscript, analysis code) ever being overwritten.
One possible concern is that two or more users may
have worked on the same code and then attempted to
push conflicting changes. There is no automatic way
for a computer to tell what changes to prioritize, but if
a conflict occurs, there is no need to worry; you simply
need to know how to resolve it.

Many different types of conflicts may appear in col-
laborative work. For example, multiple users may create
files with the same name but different content, or mul-
tiple users working on the same code may create
changes that conflict with each other. Typically, this
latter type of conflict occurs when the users have made
edits to the same line of text in the same document.
We use this situation as an example to explain how to
resolve conflicts in collaborative work.

Consider the following scenario. Two collaborators,
user A and user B, are working on the same project (they
collaborate on a repository on GitHub and work in local
repositories). At some point, they might be working on
the same file (e.g., they might be writing a manuscript
together) and find that they have made changes that
conflict with each other. More specifically, let us assume
that both users are making changes to a file, and user B

Fig. 11.  Screenshot illustrating how to find a remote repository’s URL on a project’s main GitHub page. When users navigate their Web
browser to a repository’s GitHub address and click on the big green “Clone or download” button, the complete URL appears in the text box.

https://github.com/mvuorre/reproguide-curate
https://github.com/mvuorre/reproguide-curate

14	 Vuorre, Curley

Fig. 12.  Screenshot showing how RStudio displays a Git warning if a user attempts to push conflicting changes
to the remote repository.

happens to add and commit his changes locally and
push them to the central repository before user A does.
When user A then attempts to push her incompatible
changes to the central repository, a conflict occurs. That
is just a natural consequence of two individuals working
simultaneously on the same idea and then writing dif-
ferent code in the same location in the file. When this
happens, user A needs to first integrate the latest version
of the project from the central repository to her local
project, so that it reflects both collaborators’ edits, and
then push the new merged version to the central reposi-
tory. Let us look at what this workflow entails in a little
more detail.

For this scenario, assume that user B has made
changes to the README file in the git-example project
and pushed the changes to the central repository. When
user A attempts to push conflicting changes to that
repository, RStudio will display a Git error message
indicating that the push would create a conflict (Fig.
12). User A sees that she needs to pull the most current
state of the remote repository by clicking on “Pull.”

After user A pulls the changes from the remote
repository, Git will automatically merge the two con-
flicting versions of the README file into one file in the
local repository. (Git will indicate in which file the
conflict occurred; see Fig. 13.) Git will not remove
anything, and therefore user A will need to decide
which lines of the changed file to save and which ones
to discard. User A can open the README file with
RStudio’s text editor, and it might look like this:

Example Git Project

<<<<<<< HEAD

[user A’s proposed version of the
text]

=======

[user B’s proposed version of the
text]

>>>>>>> 212ffb5de589755ae4fda57fb5af
60194283dae8

This passage indicates that the first line of the file is
identical in the two users’ versions, but after the first
line, “<<<<<<< HEAD” indicates that what follows are
the to-be-integrated lines of text. First, user A’s version
is presented, and then, after “======,” user B’s changes
from the remote repository are presented, followed by
the SHA key for those changes. User A can then edit
this file however she chooses and then add the changes
to Git’s staging area and commit the changes. Once the
commit is done, the conflict has been resolved, and
user A can push the changes to the GitHub remote
repository.

The options for dealing with conflicts within RStu-
dio’s Git panel are somewhat limited, and we present
more detailed information on managing conflicts with
Git’s command-line tools in the Supplemental Material.
There are additional kinds of conflicts that depend on
how users collaborate with one another; however, a
detailed explanation of all potential scenarios is outside
the scope of this Tutorial.13 Most important, even in the
event of conflicts, all committed changes are saved in
Git’s history and can be retrieved, so experimenting
with different approaches to resolving conflicts is safe.

The Git Version Control System	 15

Private or public collaboration?

By default, all GitHub repositories are public: Anyone
with an Internet connection can use his or her Web
browser to inspect the contents of your repository, or
even clone it to his or her computer. This may sound
unfamiliar to researchers used to working more pri-
vately, and clearly necessitates planning and thought
with respect to issues such as data privacy and sharing
sensitive materials. However, for many projects—includ-
ing writing this Tutorial—we see very few downsides
to working “in the open.”

When collaborators wish to work privately, they have
the option of placing the central repository for a Git
project on the research team’s private server instead of
GitHub, but it is also possible to make the repository
private on GitHub (this can be done when the repository
is first created or afterward). Private GitHub repositories,
and their contents, are accessible only to invited team
members and are therefore ideal when a team would
like to work without revealing their work to the public.
For example, you might want to work in a private reposi-
tory initially and make it public only once you feel the
material is mature enough for public consumption. Note,
however, that making a repository public makes all of
its contents public, including its Git history.

To make a GitHub repository private, navigate to its
Web site with a Web browser and click on “Settings” and
then “Make this repository private.” Once one user has set
the GitHub repository to private mode, anyone wishing to
clone or view the repository, push changes to it, or pull
changes from it must provide his or her GitHub username
and password. Only if they match an invited team mem-
ber’s username and password can the user access the
repository. At the time of this writing, GitHub users can
have up to five private repositories for free (see note 12).

Connecting a GitHub repository
to other services

OSF is designed for organizing and communicating
research materials and is quickly becoming a popular
service for sharing data sets and stimuli, among other
content. Researchers can easily link GitHub repositories
to their OSF projects by following on-screen instruc-
tions on the OSF Web site (http://help.osf.io/m/addons/
l/524148-connect-add-ons).

Hosting a research project’s materials online on
GitHub also makes the materials themselves citable. To
facilitate citation, researchers can connect their GitHub
repositories to Zenodo, an archiving Web site that will
assign DOIs (digital object identifiers) to the reposito-
ries. Instructions for obtaining a DOI for a GitHub
repository can be found online (https://guides.github
.com/activities/citable-code/).

Discussion

In this introductory Tutorial, we have explained how
to use the Git VCS for curating and collaborating on
research assets in behavioral sciences. The essential Git
workflow includes adding and committing incremental
changes to a version controlled repository, which can
be worked on collaboratively by many researchers
through the online GitHub platform.

Although we have advocated the use of Git and
GitHub, we do not intend to suggest that it is the only,
or always the best, method for curating and collaborat-
ing on research materials (see Box 3 for other common
misconceptions related to Git). For example, hosting a
text document on a service such as Google Docs or
Dropbox allows collaborators to instantly see each
other’s saved edits. Both of these alternatives also allow

Fig. 13.  Screenshot from RStudio showing an error message for a conflict in the README file. Whenever a
user pulls changes from the central repository and there is a conflict with the local repository, a conflict warn-
ing will indicate the file (or files) with a conflict.

http://help.osf.io/m/addons/l/524148-connect-add-ons
http://help.osf.io/m/addons/l/524148-connect-add-ons
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/

16	 Vuorre, Curley

users to access files’ history (Dropbox’s history is lim-
ited to the past 30 days). If documents are worked on
in Word with “Track Changes” enabled, collaborators
can also see who has edited what and can revert
changes in the text. In comparison, Git requires addi-
tional operations to send changes to and receive
changes from collaborators, which may not be the best
workflow for simple collaborative projects, such as edit-
ing manuscripts. Online services such as Overleaf
(https://www.overleaf.com/) and Authorea (https://
www.authorea.com/) also seem potentially useful for
collaborative writing, and can be easier to use than Git.

However, for more complicated projects, VCSs, such
as Git, have many benefits over these alternatives. For
example, we believe it is helpful to think of many
manuscripts in the context of a greater project that
contains other materials, such as data, analysis scripts,
and stimuli. In such cases, collaborators may wish to
change not only the text of the manuscript, but also,
for example, the associated statistical analyses. Git also
helps collaborators to stay up-to-date with all of a
project’s components, thus possibly reducing room for
error due to, for example, using outdated data or analy-
sis files: Without Git, collaborators must create a dif-
ferent file for each version of the analysis, which can
lead to an unwieldy project and confusion as to which
version is the most up-to-date or appropriate. Further,
because Dropbox and other similar services automati-
cally synchronize files across collaborators, it is sometimes
difficult to collaborate on the same file simultaneously
using these services. Git allows multiple people to
work on the same files simultaneously because the

saving and synchronizing steps are separated from
each other.

Using Git with RStudio is an especially attractive
option for psychologists because the RStudio IDE, with
the R Markdown and knitr packages (Allaire et al., 2016;
Xie et al., 2016), offers a complete environment for
project management, data analysis, and manuscript
preparation. Psychologists will also be interested in the
papaja package for creating manuscripts formatted
according to American Psychological Association style
(Aust & Barth, 2018; this manuscript was prepared with
the papaja package).

Although this Tutorial includes enough material for
readers to get started, Git (and GitHub) is a vast eco-
system with great opportunities, some of which are
discussed further by Perez-Riverol et al. (2016; see Box
4 for additional resources on using Git and GitHub).
For example, the concept of “born-open data” (i.e.,
research data that are automatically posted online upon
collection) can be implemented easily with the Git +
GitHub workflow (Rouder, 2016). The challenges to
reproducibility are many, and they have only recently
received the targeted attention they deserve in the col-
laborative effort to improve the reliability of empirical
sciences. Curating research assets and focusing on the
practical aspects of the scientific workflow is important
for ensuring the continuity of one’s work, and for efforts
toward a cumulative and reliable science.

Action Editor

Alex O. Holcombe served as action editor for this article.

Box 3.  Responses to Common Misconceptions About Git

Misconception: It seems that it would be easy to lose my work with Git.
Response: Git does not change current files or folders unless asked to do so, and therefore using Git does not affect the
likelihood that something will happen to them (e.g., because of hardware failure). Essentially, Git saves the history of a file’s
contents in a hidden .git folder inside the repository; if users tamper with this folder or run Git commands without knowing
their consequences, it is possible to corrupt or lose parts of this history. Further, current uncommitted changes are discarded
when a user retrieves (checks out) an older version of the repository. Therefore, users should ensure that important changes
are committed before they retrieve an old version.

Misconception: I already back up my work, so I have no need for Git.
Response: Git is a tool for keeping track of changes to projects, not for backing up projects. However, connecting one’s local
Git repository to GitHub creates a cloud copy of it (provided one keeps the GitHub repository up-to-date).

Misconception: Saving a file is pretty much the same as a Git commit.
Response: Saving a file overwrites the file’s immediately previous version on the computer’s hard drive. Without Git, the file’s
previous versions can rarely be retrieved without a specialist’s intervention. With Git, a file’s previous committed versions can
be retrieved from Git’s history.

Misconception: I do not use Git because I want my work in progress to be private.
Response: Any Git repository created on a local computer is private. Even when a local Git repository is connected to a remote
online repository, users must perform a separate operation (push) to send the local contents to the online repository. Further,
users can set their online repositories to be either public (accessible by anyone) or private (accessible only with a password).

https://www.overleaf.com/
https://www.authorea.com/
https://www.authorea.com/

The Git Version Control System	 17

Box 4.  Additional Resources for Learning About Git

• � The Basic Workflow of Git (an infographic explaining how Git’s version control system works): https://www.git-tower.com/
blog/workflow-of-version-control

• � Git + GitHub (information on using Git and GitHub in an R programming context): http://r-pkgs.had.co.nz/git.html
• � GitHub’s Git cheat sheets (reference sheets on the most commonly used Git commands; available in multiple languages):

https://services.github.com/resources/cheatsheets/
• � GitHub Glossary (a glossary of Git and GitHub terminology): https://help.github.com/articles/github-glossary/
•  Pro Git (Chacon & Straub, 2014; a complete manual of Git): https://git-scm.com/book/en/v2
• � tryGit (an interactive Web site for learning the basics of Git): https://try.github.io

Author Contributions

M. Vuorre and J. P. Curley designed the format of this Tutorial.
M. Vuorre drafted the manuscript, and J. P. Curley provided
critical revisions and comments. Both authors approved the
final version of the manuscript for submission.

Acknowledgments

We thank Tom Hardwicke, Travis Riddle, Judy Xu, and two
anonymous reviewers for feedback on earlier drafts of this
manuscript.

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest
with respect to the authorship or the publication of this article.

Funding

This work was supported, in part, by Institute of Education
Science Grant R305A150467. The authors are solely respon-
sible for the content of this article.

Supplemental Material

Additional supporting information can be found at http://
journals.sagepub.com/doi/suppl/10.1177/2515245918754826

Open Practices

All materials have been made publicly available via the Open
Science Framework and can be accessed at https://osf.io/
txgn8/. The complete Open Practices Disclosure for this article
can be found at http://journals.sagepub.com/doi/suppl/10
.1177/2515245918754826. This article has received the badge
for Open Materials. More information about the Open Practices
badges can be found at http://www.psychologicalscience.org/
publications/badges.

Notes

1. The software we discuss in this article (Git, GitHub) is used
by major software developers such as Microsoft, Google, and
Facebook on code bases with hundreds of contributors.
2. The creator of Git, Linus Torvalds (who also is the princi-
pal developer of the Linux operating system), says he named

Git, which is British slang for “a rotten person,” after himself
(McMillan, 2005).
3. Git submodules allow more advanced users to link projects to
each other and to organize a complex project into subprojects
(https://git-scm.com/book/en/v2/Git-Tools-Submodules).
4. There are no visible changes to a folder once it is tracked by
Git. After Git is initialized in a folder, the only change is that
a hidden folder, called .git, is added, but users do not need to
interact with it directly.
5. Although we refer to the R programming language in the
example that follows, Git can be used through the RStudio GUI
even if you do not use R (or any other programming language).
6. For a video tutorial showing how to set up Git with RStudio,
see https://pagepiccinini.com/r-course/lesson-0-introduction-
and-set-up/.
7. The README file is so important that it has become standard
practice to write this file name in capital letters. We follow this
tradition here, but note that the capital letters are a tradition,
not a requirement.
8. Plain text has many advantages over proprietary file formats,
such as Microsoft Word’s .docx format. Briefly, plain text is both
human and computer readable, is both forward and backward
compatible (there will always be, and has always been, soft-
ware capable of reading it), and takes very little memory. The
file extension of a plain-text file does not matter much, but we
recommend using the widely recognized .txt extension or, in the
case of markdown syntax, .md. For README files, no file exten-
sion is needed.
9. Files specified in .gitignore are only ignored by Git; they
will still behave just like any other file in your local computer’s
hard drive.
10. It is entirely up to the user to decide what to commit and
when. However, it is best practice to commit often while mak-
ing incremental changes. Ideally, each commit should solve
one problem, introduce one new idea, or—more generally—
do one thing. This way, when the commit history is reviewed
later, it is easy to find a specific change.
11. RStudio also has a History panel, which is related to R com-
mand history, and should not be confused with the “History”
button in the Git Commit panel.
12. To obtain the free repositories, fill out the request form at
https://education.github.com/discount_requests/new. Students
with .edu e-mail addresses can obtain unlimited free reposito-
ries at https://education.github.com/pack.
13. Although the instructions we provide will help in the most
commonly encountered scenarios, readers can refer to the

https://www.git-tower.com/blog/workflow-of-version-control
https://www.git-tower.com/blog/workflow-of-version-control
http://r-pkgs.had.co.nz/git.html
https://services.github.com/resources/cheatsheets/
https://help.github.com/articles/github-glossary/
https://git-scm.com/book/en/v2
https://try.github.io
http://journals.sagepub.com/doi/suppl/10.1177/2515245918754826
http://journals.sagepub.com/doi/suppl/10.1177/2515245918754826
https://osf.io/txgn8/
https://osf.io/txgn8/
http://journals.sagepub.com/doi/suppl/10.1177/2515245918754826
http://journals.sagepub.com/doi/suppl/10.1177/2515245918754826
http://www.psychologicalscience.org/publications/badges
http://www.psychologicalscience.org/publications/badges
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://pagepiccinini.com/r-course/lesson-0-introduction-and-set-up/
https://pagepiccinini.com/r-course/lesson-0-introduction-and-set-up/
https://pagepiccinini.com/r-course/lesson-0-introduction-and-set-up/
https://education.github.com/discount_requests/new
https://education.github.com/pack

18	 Vuorre, Curley

following Web sites for more information: https://help.github
.com/articles/resolving-a-merge-conflict-using-the-command-
line/ and https://www.atlassian.com/git/tutorials/comparing-
workflows. You can also resolve conflicts directly on GitHub
(https://help.github.com/articles/resolving-a-merge-conflict-
on-github/). Note that GitHub’s customer service (https://
github.com/contact) is very responsive to users’ help requests.

References

Allaire, J. J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen,
J., . . . Hyndman, R. (2016). rmarkdown: Dynamic docu-
ments for R (Version 1.3) [Computer software]. Retrieved
from https://cran.r-project.org/web/packages/rmarkdown/
index.html

Aust, F., & Barth, M. (2018). papaja: Prepare reproducible
APA journal articles with R Markdown (R package Version
0.1.0.9709) [Computer software]. Retrieved from https://
github.com/crsh/papaja

Chacon, S., & Straub, B. (2014). Pro Git (2nd ed.). Retrieved
from https://git-scm.com/book/en/v2

Eglen, S. J., Marwick, B., Halchenko, Y. O., Hanke, M., Sufi, S.,
Gleeson, P., . . . Poline, J.-B. (2017). Toward standard prac-
tices for sharing computer code and programs in neurosci-
ence. Nature Neuroscience, 20, 770–773. doi:10.1038/nn.4550

GitHub. (2018). [“About” page]. Retrieved from https://github
.com/about

Harry, B. (2017, May 24). The largest Git repo on the planet
[Web log post]. Retrieved from https://blogs.msdn.micro
soft.com/bharry/2017/05/24/the-largest-git-repo-on-the-
planet/

Ihle, M., Winney, I. S., Krystalli, A., & Croucher, M. (2017).
Striving for transparent and credible research: Practical
guidelines for behavioral ecologists. Behavioral Ecology,
28, 348–354. doi:10.1093/beheco/arx003

Markowetz, F. (2015). Five selfish reasons to work repro-
ducibly. Genome Biology, 16, Article 274. doi:10.1186/
s13059-015-0850-7

McMillan, R. (2005, April 20). After controversy, Torvalds
begins work on “git.” PC World. Retrieved from https://
www.pcworld.idg.com.au/article/129776/after_contro
versy_torvalds_begins_work_git_/

Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S.,
Chambers, C. D., Percie du Sert, N., . . . Ioannidis, J. P. A.
(2017). A manifesto for reproducible science. Nature Hu-
man Behaviour, 1(1), Article 0021. doi:10.1038/s41562-
016-0021

Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T.,
Uszkoreit, J., Leprevost, F. da V., . . . Vizcaíno, J. A.
(2016). Ten simple rules for taking advantage of Git
and GitHub. PLOS Computational Biology, 12(7), Article
e1004947. doi:10.1371/journal.pcbi.1004947

Project TIER. (n.d.). Specifications. Retrieved from https://
www.projecttier.org/tier-protocol/specifications/

R Core Team. (2017). R: A language and environment for
statistical computing (Version 3.4.3) [Computer software].
Retrieved from https://www.R-project.org/

Rouder, J. N. (2016). The what, why, and how of born-
open data. Behavior Research Methods, 48, 1062–1069.
doi:10.3758/s13428-015-0630-z

RStudio Team. (2016). RStudio: Integrated development
environment for R (Version 1.1) [Computer software].
Retrieved from http://www.rstudio.com/

Vanpaemel, W., Vermorgen, M., Deriemaecker, L., & Storms,
G. (2015). Are we wasting a good crisis? The availability
of psychological research data after the storm. Collabra:
Psychology, 1, Article 3. doi:10.1525/collabra.13

Wicherts, J. M., Borsboom, D., Kats, J., & Molenaar, D.
(2006). The poor availability of psychological research
data for reanalysis. American Psychologist, 61, 726–728.
doi:10.1037/0003-066X.61.7.726

Xie, Y., Vogt, A., Andrew, A., Zvoleff, A., Simon, A., Atkins,
A., . . . Foster, Z. (2016). knitr: A general-purpose pack-
age for dynamic report generation in R (Version 1.15.1)
[Computer software]. Retrieved from https://cran.r-project
.org/web/packages/knitr/index.html

https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://help.github.com/articles/resolving-a-merge-conflict-on-github/
https://help.github.com/articles/resolving-a-merge-conflict-on-github/
https://github.com/contact
https://github.com/contact
https://cran.r-project.org/web/packages/rmarkdown/index.html
https://cran.r-project.org/web/packages/rmarkdown/index.html
https://github.com/crsh/papaja
https://github.com/crsh/papaja
https://git-scm.com/book/en/v2
https://github.com/about
https://github.com/about
https://blogs.msdn.microsoft.com/bharry/2017/05/24/the-largest-git-repo-on-the-planet/
https://blogs.msdn.microsoft.com/bharry/2017/05/24/the-largest-git-repo-on-the-planet/
https://blogs.msdn.microsoft.com/bharry/2017/05/24/the-largest-git-repo-on-the-planet/
https://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/
https://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/
https://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/
https://www.projecttier.org/tier-protocol/specifications/
https://www.projecttier.org/tier-protocol/specifications/
https://www.R-project.org/
http://www.rstudio.com/
https://cran.r-project.org/web/packages/knitr/index.html
https://cran.r-project.org/web/packages/knitr/index.html

