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Abstract Statistical mediation allows researchers to inves-
tigate potential causal effects of experimental manipulations
through intervening variables. It is a powerful tool for
assessing the presence and strength of postulated causal
mechanisms. Although mediation is used in certain areas of
psychology, it is rarely applied in cognitive psychology and
neuroscience. One reason for the scarcity of applications is
that these areas of psychology commonly employ within-
subjects designs, and mediation models for within-subjects
data are considerably more complicated than for between-
subjects data. Here, we draw attention to the importance
and ubiquity of mediational hypotheses in within-subjects
designs, and we present a general and flexible software
package for conducting Bayesian within-subjects media-
tion analyses in the R programming environment. We use
experimental data from cognitive psychology to illustrate
the benefits of within-subject mediation for theory testing
and comparison.

Keywords Mediation - Multilevel analysis - Repeated
measures - Bayesian statistics - Causal mechanism

Many important questions in psychology concern a causal
chain of relationships between an initial cause and its effect
through an intermediary process. One common method
for investigating such causal models, statistical mediation,
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assesses to what extent the effect of an independent vari-
able (IV) on a dependent variable (DV) is mediated by an
intervening variable M. Mediation is suitable for answering
many questions about causal processes in cognitive psy-
chology and neuroscience, such as: “Do expectations alter
brain activity, and thereby change how individuals respond
to stimuli?” (Atlas, Bolger, Lindquist, & Wager, 2010); and
“Does cellphone use while driving cause traffic accidents by
increasing drivers’ attentional demands?” (e.g., Ishigami &
Klein, 2009). Mediation models are valuable because they
allow the evaluation of theoretical predictions about causal
mechanisms, whether in testing a single theory or in theory
comparison.

Experiments in cognitive psychology, and related areas,
often investigate moderational hypotheses, by for example
testing interaction effects in multi-way ANOVAs, but inves-
tigations of mediational hypotheses (see Baron & Kenny,
1986 for a discussion on the distinction between mediating
and moderating variables) in cognitive psychology are rare
in comparison to many other branches of psychology (Table
1 in MacKinnon, Fairchild, & Fritz, 2007). One reason for
the rarity of mediational hypotheses in this area may relate
to the difficulties associated with appropriately analyzing
mediation when the data consist of repeated measures over
individuals in within-subject designs—as is often the case in
cognitive experiments. One general, and increasingly com-
mon, strategy for analyzing repeated measures data and
within-subject designs is multilevel modeling, which postu-
lates that the data are nested within units, such as trial-level
observations nested within individual participants. Over
the past decade, multilevel analysis has been successfully
implemented to assess mediation where data are repeatedly
measured within individuals in different conditions, such
as many experiments in cognitive psychology and neuro-
science. Here, we briefly introduce the classic mediation
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model of Baron and Kenny (1986) and the multilevel mod-
eling approach to estimating mediation with repeated mea-
sures (Kenny, Kashy, & Bolger, 1998; Kenny, Korchmaros,
& Bolger, 2003). We then introduce an easy-to-use software
package for Bayesian estimation of multilevel mediation
models in the R programming environment, and illustrate its
use with an example.

Mediation

In what follows, we discuss a mediation model where X
is the hypothesized causal variable, usually the IV in an
experiment, Y is the measured outcome (the DV), and M a
measured variable, which hypothetically mediates X’s effect
on Y. We restrict our discussion to cases where X and Y are
either binary or continuous and M is continuous. We focus
on, and implement in the software presented below, this
three variable mediation model because of its wide appli-
cability and suitability for data from cognitive psychology
and neuroscience experiments. This model is illustrated in
Fig. 1.

The three causal paths in Fig. 1—a, b, and ¢’, correspond-
ing to X’s effect on M, M’s effect on Y, and X’s effect on Y
having taken M into account, respectively—correspond to
parameters from two regression models, one in which M is
the outcome and X the predictor, and one in which Y is the
outcome and X and M the simultaneous predictors. From
these parameters, we can compute the mediation effect (the
product ab; also known as the indirect effect), and the total
effect of X on Y,

c=c +ab. (D

Thus, the total causal effect of X, which is captured by
the parameter c, can be decomposed precisely into two com-
ponents, a direct effect ¢’ and an indirect effect ab (the
product of the a and b paths). There is evidence of medi-
ation when the uncertainty interval (we later define this
interval in more detail and distinguish confidence and cred-
ible intervals) for ab is sufficiently small that one can rule

Fig. 1 Diagram of the mediation model
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out zero as a likely population value. There is evidence of
complete mediation if the uncertainty interval for the direct
component ¢’ is narrow around zero. As in all conclusions
from data, assertions of mediation are probabilistic (and
we caution users not to interpret the uncertainty intervals
as hypothesis tests). Furthermore, the distinction between
complete and partial mediation may not always be useful,
and researchers may instead want to focus on the magnitude
of the mediation effect (Shrout & Bolger, 2002).

To continue with the cellphone and traffic accident exam-
ple, talking on a cellphone (X) may increase the driver’s
attentional or cognitive load (M; path @), which in turn may
lead to traffic accidents (Y; path b) (e.g., see Ishigami &
Klein, 2009). If attentional or cognitive demands completely
explained the cellphone use — traffic accidents relation-
ship, then the mediation effect (ab) would be close in size
to ¢, whereas the direct effect (¢’) would be close to zero.
If attentional demands did not completely explain the rela-
tionship, ¢’ and its associated uncertainty interval would
also allow excluding zero as a plausible value. Viewed in
this light, the mediation model consists of a pair of regres-
sion models, and inference is performed by interpreting
the model’s estimated parameters and their transformations
(ab, c’, c; Baron & Kenny, 1986; Shrout & Bolger, 2002).
Importantly, this logic can be extended to multilevel regres-
sion models to analyze data with repeated measures (Kenny
et al., 2003), a task we turn to next.

Multilevel mediation model for repeated measures

Multilevel modeling (sometimes called hierarchical mod-
eling, or linear mixed modeling) is a general approach
for treating non-independent observations, such as repeated
measures within individuals in psychological experiments.
The key assumption in a multilevel model is that the lower
or trial level observations are nested within upper level units
(individual participants), and the general approach consists
of estimating regression models where parameters at the
level of individual subjects, and the population of sub-
jects are estimated simultaneously. In educational research,
the upper level units can be schools, and the lower level
observations can be students within those schools. In cogni-
tive experiments, the upper level units are persons, and the
lower-level units are measured repeatedly over trials. Such
data structures characterize many—if not most—within-
subject experiments in cognitive psychology, where each
subject is repeatedly exposed to each level of the treat-
ment variable. For example, in the Stroop task (Stroop,
1935), subjects usually observe (multiple instances of) both
congruently and incongruently colored letters.
Within-subject designs and repeated measures have tra-
ditionally been analyzed with methods such as repeated
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measures AN(C)OVA. However, multilevel models have
many benefits over these methods, such as the ability to
naturally account for unbalanced data (unequal number of
observations across individuals, groups, and conditions), the
ability to incorporate continuous and categorical variables,
estimation of the variation in effects across individuals, and
the extent to which the effects covary in the population of
individuals (see e.g., Bolger & Laurenceau, 2013; Gelman
& Hill, 2007; Jaeger, 2008; McElreath, 2016). For these and
other reasons, multilevel models have grown in popularity
at a rapid pace.

Importantly, multilevel modeling is also applicable in
mediation analysis when the data consist of multiple mea-
surements within individuals, allowing either some or all
of the paths to vary between individuals in the study. As
in other types of data where measurements are correlated
(within-individuals, for example), ignoring this structure of
the data can lead to inaccurate standard errors and thereby
lead to over- or underconfidence in one’s findings. When
each of the X, M, and Y variables are repeatedly mea-
sured within individuals, the mediation model is commonly
known as 1 — 1 — 1, or lower level mediation because
each variable is measured at the lowest level (Kenny et al.,
2003; level 1, trials, in contrast to level 2, the individuals;
Krull & MacKinnon, 2001; Preacher, 2015). In the current
work, we focus on this model. Other multilevel mediation
models include 2 — 1 — 1 mediation, where the X variable
does not vary at the lower level (Preacher, 2015; Rauden-
bush & Sampson, 1999), and 2 — 2 — 1 mediation, where
only the outcome variable (Y) is repeatedly measured (Krull
& MacKinnon, 2001).

After the topic was introduced (Kenny et al., 1998), mul-
tilevel mediation has attracted interest both in methodology
development and application (Preacher, 2015). It has been
successfully applied in 1 — 1 — 1 models (Kenny et al.,
2003), multilevel models with moderation (Bauer, Preacher,
& Gil, 2006), but requires care in application, such as con-
siderations of within-cluster centering variables to isolate
between- and within-subject effects from each other (Zhang,
Zyphur, & Preacher, 2009). Multilevel mediation has also
been extended to multilevel structural equation modeling
(Preacher, Zyphur, & Zhang, 2010), but SEM approaches
are outside of the scope of the current work.

Multilevel mediation equations In this article, we con-
sider a mediation model applied to data where the inde-
pendent variable is manipulated within individuals, and the
outcome and hypothesized mediating variables are mea-
sured on each trial. These data then afford two levels
of analysis: At the lower level are trial-level observa-
tions, which are clustered within individual persons at
the upper level. The following equations refer to (and
the software presented below requires) data sets struc-
tured in long format. That is, each observation is on a

Table 1 First six rows of the example data set

subj lag hr jop hr_cw
1 1 36.7 30 -23.3
1 1 50.0 80 -10.0
1 0 56.7 90 -3.3
1 1 56.7 32 -3.3
1 1 56.7 50 -3.3
1 0 70.0 76 -10.0

Note. Variables with “_cw” are centered within-person

separate row, and each variable has its own column. When
an experiment consists of multiple trials, then each row
would represent a trial, and the different variables measured
(or manipulated) during the trials would be in their own
columns. The example data are presented in this format in
Table 1.

The multilevel mediation equations include both
population- and subject-level parameters. The population-
level parameters describe the distribution of the parameters
in the population, and are usually of key interest in the anal-
ysis. The means of these distributions (sometimes known
as “fixed effects”) describe the effects “for the average
person” (Bolger & Laurenceau, 2013), whereas their stan-
dard deviations (sometimes known as “random effects™)
describe the extent to which people differ from one another
in the population. The subject-level parameters are specific
to the individuals in the current sample of subjects, and are
considered random draws from the population-level dis-
tribution. We avoid using the terms “fixed” and “random”
because they can be confusing, and are less meaningful in
the Bayesian context where all parameters are random in
some sense (Gelman & Hill, 2007, p. 245; Gelman et al.,
2013, p. 383).

We denote the subject-level effects with the same let-
ters as the population-level effects but prepend them with
u and append with the index variable j to specify that they
vary across units of j (the individual subjects; Fig. 2).! An
important addition to the equations is the covariance of the
subject-level a; and b; parameters, illustrated on top of
Fig. 2 (and explained in further detail below).

IWe refer to the subject-level parameters as effects, although they
more accurately represent deviations of the subject-level parameters
from the population-level average effects. We use this nomenclature
for two reasons: First, we believe it is more straightforward and avoids
an unimportant technicality. Second, although we could have directly
written the model so that the subject-level parameters are effects, not
deviations from the population-level effects, we found that the MCMC
algorithms were more efficient when using the parameterization pre-
sented here. Importantly, the subject-specific effects returned by the
software (such as those Fig. 7) are not deviations from the average
effect, but instead have the average effect added to them and can
therefore be considered as the subject-specific effects.

@ Springer
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Fig. 2 Diagram of the within-subjects mediation model

In writing the model, we deviate from the common “error
term” representation, where the stochastic component of the
model is added separately to indicate that the errors are
normally distributed, and instead represent the models as
probability distributions themselves, an approach we think
is more natural in the Bayesian context.

Analyzing the causal paths in Fig. 2 consists of estimat-
ing two multilevel regression equations. For path a (X’s
effect on M), we model each observation of M;; (observa-
tion in row i for individual j; see Table 1) as a random draw
from a Gaussian distribution with mean fy,; and standard
deviation ojs. Note that o) is the standard deviation of the
lower-level residual. The linear model is then represented as

a regression equation for up;;,

Mij ~ N(ta; . o5p) 2

/-'LMI']' z(dM+ude)+(a+Maj)Xl] (3)

The first term in Eq. 3, dyy, is the population-level inter-
cept for M, and ugpy; is the subject-level intercept for
subject j (see footnote 1). The M — Y and X — Y slopes
(paths b and ¢’) are captured by modeling Y;; (observation
of Y in row i for individual j; see Table 1) as random draws
from a Gaussian distribution with mean py;; and standard
deviation oy (which, again, is the lower-level residual of Y).

Yij ~ N(uy,;, 07) 4)

ty,; = (dy +uay;) + (' + ug)Xij + (b +up)Mij. (5

This regression predicts Y from the combination of
population-level and subject-level intercepts dy and ugy;,
respectively; population and subject-level direct effects of X
onY (¢’ and u ¢ ); and population- and subject-level effects
of Mon'Y (b and up, ).

The multilevel nature of this model is captured by
specifying the subject-level parameters as draws from a
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multivariate normal distribution with a 5 x 1 vector of means
of zero and a 5 x 5 covariance matrix X,

U, | ~N(Q,X). (6)

Together, Eqs. 2—6 constitute the multilevel mediation
model. From the model’s estimated parameters, we can cal-
culate for each individual, and the population average, all
the additional parameters that are used to assess mediation,
such as me (population-level mediation effect; also known
as indirect effect) or u,,., (mediation effect for person 3).
However, calculating the mediation effect, and therefore the
total effect of X on Y (c¢) for the multilevel model differs
in important ways from the single-level (between-subject)
calculations (Eq. 1). To obtain the population-level media-
tion effect, we must add the covariance of a; and b; to the
product of the population-level a and b (as shown by Kenny
et al., 2003, eqn. 9):

me = ab—i—aajbj. 7

Oajbjs the covariance of a; and b}, is an element of the
covariance matrix ¥, and indicates the degree to which sub-
jects with (say) greater values of a; are likely to have greater
values of b; (in the case where the covariance is positive).
Tofighi et al. noted that this covariance term can indicate
an omitted variable that interacts with the a and b slopes,
and therefore including it in the model leads to a more gen-
eral model that allows misspecification of the model at the
between subject level (Tofighi, West, & MacKinnon, 2013).
These authors suggested that researchers estimate the model
both with and without this covariance term (Tofighi et al.,
2013, p. 301), but in our view it is more straightforward to
allow this parameter to be estimated from the data. Note,
however, that researchers can effectively force this parame-
ter to be zero by specifying a prior on it that spikes at zero
(see below), but we don’t recommend this approach unless
there is abundant prior information to suggest such a model.
This covariance is illustrated in Fig. 2, with a double-headed
arrow connecting a; and b;.

Finally, the population-level total effect of X on Y is
given by

c=me+c. ®)

The software also allows estimating the same multilevel
mediation model, but for a binary Y variable (coded as Os
and 1s.) In this case, the model for Y (Eqgs. 4 and 5) is a
multilevel logistic regression:

Yij ~ Bernoulli(py,;) ®
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1 +€Xp(—7’]y[.j) ( )

Hy;; =

ny; = (dy +uay;) + (' + ue ) Xij + (b +up))Mij. (1)

The Bernoulli distribution in Eq. 9 is the Binomial
distribution for a single trial.

Alternatives to multilevel models

Although multilevel modeling is not the only approach to
within-subject mediation, we believe that in the types of
experiments most commonly employed in cognitive psy-
chology and neuroscience, it is the most parsimonious and
applicable mediation model.

A common alternative to multilevel modeling in within-
subject mediation is longitudinal modeling, where change
processes within individuals are modeled to occur over time
(Cheong, MacKinnon, & Khoo, 2003; Cole & Maxwell,
2003; MacKinnon, 2008; Selig & Preacher, 2009). While
a tremendously valuable approach in many areas of psy-
chology, longitudinal models are less relevant in cognitive
psychology and neuroscience, because experiments in these
fields rarely track participants over time. Instead, exper-
imental conditions are usually randomized trial-wise (or
block-wise), and the experiments usually are less than an
hour or two in duration, meaning that any possible change
within individuals occurs repeatedly over the course of
the experiment (when conditions change across trials) with
no meaningful purely temporal pattern with respect to the
causal effect.

Another method of addressing mediation in within-
subject designs focuses on using change scores between
experimental conditions (Judd, Kenny, & McClelland,
2001; Montoya & Hayes, 2017), a valuable approach for
experiments where participants provide only two measures.
This method was recently advanced to include designs with
control groups (Valente & MacKinnon, 2017). While use-
ful for e.g., pre-post-test designs, this method does not easily
address designs where the manipulated variable (X) is con-
tinuous, or where participants are measured more than twice.

While useful in many situations, these other approaches
to within-subject mediation are less practical and appli-
cable than multilevel models in the context of cognitive
psychology and neuroscience experiments. Therefore, we
have decided to focus and implement a multilevel modeling
approach to within-subject mediation.

Bayesian estimation

Traditional procedures of estimating (within-subject) medi-
ation models have focused on various frequentist methods,

such as ordinary least squares (OLS) and maximum likeli-
hood estimation (MLE). We instead advocate—and imple-
ment in the software package discussed below—Bayesian
estimation, because it offers several advantages over these
conventional methods. The benefits include the natural
description of uncertainty in estimated parameters in the
form of a posterior distribution, and the probability interpre-
tation afforded by it; the ability to incorporate prior informa-
tion in the statistical model; and a more natural interpreta-
tion of multilevel models. We discuss these benefits below,
and then highlight some similarities of the Bayesian method
to classical procedures before briefly introducing the pre-
cise method by which the Bayesian estimation is conducted
in our software package.

Traditional MLE methods for assessing (multilevel)
regression models, such as those described above, provide
point estimates and standard errors of the estimated param-
eters, which are in turn based on assumptions about the
parameters’ sampling distributions, and from which con-
fidence intervals can be calculated. In contrast, Bayesian
analyses provide, for each parameter, full posterior proba-
bility distributions of plausible parameter values, and there-
fore directly interpretable representations of uncertainty
(Kruschke, 2014).

This fact is important when the investigation focuses
on transformations of the estimated parameters at multi-
ple levels, such as Eqgs. 7 and 8, because the uncertainty
in the estimated parameters is conveniently carried for-
ward to uncertainty in the transformations of the estimated
parameters, such as ¢, me and pme (at both levels) in
the multilevel mediation model. The posterior distribu-
tions can then be summarized by X% Credible Intervals or
displayed visually to effectively communicate the relative
plausibilities of various (transformed) parameter values. We
believe the visual inspection of histograms and violin plots
(Figs. 5 and 6) can benefit inference by helping users focus
on distributions of plausible values, instead of point esti-
mates. Visual inspection of the distribution of plausible
values is especially important when the underlying distribu-
tion may be non-Gaussian, such as for indirect effects (or
pme) in mediation, or when sample sizes are small.

Further, unlike the standard error given by MLE methods,
the Bayesian posterior distribution is a probability distri-
bution and allows statements of relative probabilities of
parameter values. For instance, we often wish to discuss
the plausibility of various parameter values, and our subjec-
tive confidence in these values. The posterior distribution
obtained by a Bayesian analysis allows just that: Through-
out this article we refer to “X% most plausible values”, and
“credible” parameter values. These statements can be made
based on summaries of the posterior distribution, such as
the Credible Interval, which contains some percentage of
the central values of the distribution. Confidence Intervals
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based on more common frequentist estimation methods
(such as MLE) do not allow such statements of plausibil-
ity or subjective confidence, although they are sometimes
(wrongly) so interpreted (Morey, Hoekstra, Rouder, Lee, &
Wagenmakers, 2015).

The Bayesian framework also allows incorporating prior
information in the statistical model. When prior informa-
tion on the magnitudes of parameters is available, it can be
naturally incorporated in the analysis, thus improving the
estimates. This information can come from expertise in the
field of study, earlier studies, or knowledge about the natural
constraints in the data. For example, researchers are some-
times aware of limits beyond which parameters are unlikely
to be found; this information can be incorporated in the
form of a prior distribution which will decrease the variance
of the estimate. Information used in this manner is some-
times called a “regularizing” prior, and can be very useful
especially in contexts when the data are uninformative about
the parameter (McElreath, 2016).

A related benefit of incorporating prior information into
a statistical model relates to the stability of the estimated
parameters. A well-known problem with MLE methods in
the context of multilevel models is that point estimates of the
between-person heterogeneity parameters (often denoted 7,
see Eq. 6) cannot be distinguished from zero, even though
the parameter’s likelihood function contains a considerable
range of non-zero values. A consequence of this is that with
MLE the person-level parameters conditional on the zero
heterogeneity would be erroneously estimated as identi-
cal. This situation occurs especially in applying generalized
multilevel models, such as logistic regression. However, the
Bayesian analysis provides a distribution of values for the
heterogeneity parameter, which consequently is not “stuck”
at zero and thus allows the subject-level parameters to vary.
In these situations, the data can be relatively uninformative
about the actual value of the parameter, and the posterior
distribution may be unnecessarily wide.

In addition, when this happens, the Bayesian analy-
sis allows including prior information in the form of a
heavy-tailed distribution, such as Cauchy with appropri-
ate hyperparameters (Gelman, 2006). This information can
then effectively regularize the inference toward more realis-
tic values, and thereby allow estimating the between-person
heterogeneity parameter even in situations where MLE
methods fail and the data are relatively uninformative about
the underlying parameter values.

Although the topic is beyond the scope of this article,
prior information allows Bayesian hypothesis testing in a
straightforward manner using Bayes factors. Bayes factors
can be thought of as quantifying the “extent to which data
cause revision in belief” (Kass & Raftery, 1995; Rouder,
Morey, Verhagen, Province, & Wagenmakers, 2016, p.
533) where “belief” is the prior probability distribution.
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Furthermore, Bayes factors can be fairly easily estimated
using MCMC samples (see below) using the Savage—Dickey
density ratio method; details are given by Wagenmakers,
Lodewyckx, Kuriyal, and Grasman (2010).

Multilevel mediation is both conceptually and compu-
tationally significantly more complicated than single-level
mediation. One conceptual difficulty is in how the param-
eters are interpreted at various levels of analysis: Classical
methods consider the upper-level parameters as “fixed”, and
the lower-level parameters as “random”. This may not be
a fundamental problem, but at least presents difficulties in
teaching and communication (see footnote 2 in Gelman &
Hill, 2007, p. 245 for an exposition of the problem; see also
Yuan & MacKinnon, 2009, p. 312). In the Bayesian context,
in contrast, all estimated quantities—irrespective of their
level in the model’s hierarchy—are considered random. In
the context of the multilevel mediation model, the upper-
or population-level parameters can then be considered as
empirically informed priors for the lower- or subject-level
parameters (equation 6; Gelman & Hill, 2007).

On the computational side, conventional methods are
often more difficult to apply to complex models, such
as multilevel mediation (Kenny et al., 2003; Yuan &
MacKinnon, 2009). On the other hand, Bayesian meth-
ods allow for a relatively straightforward estimation, espe-
cially when it is implemented with efficient MCMC meth-
ods (as discussed below). Although out of the scope
of this manuscript, the Bayesian method will easily fit
more complicated models with large numbers of covari-
ates, levels of analysis, and parameter transformations—
even in situations where more traditional MLE meth-
ods may fail or be too difficult to implement in
practice.

Similarities of frequentist and Bayesian methods Having
detailed some benefits of a Bayesian approach to estimat-
ing the multilevel model, it is also important to be aware of
some important similarities between results obtained with
Bayesian and more traditional MLE based methods. For
one, when the sample size is very large, and the sampling
error correspondingly small, the point estimate of a parame-
ter can be considered a sufficient description of the posterior
distribution (Gelman et al., 2013). However, in practice
sample sizes are rarely that large.

A more important similarity between classical and
Bayesian methods is that if no prior information is included
@ ~ U(—00,0)), and the model estimation presents
no problems, the obtained intervals often have identical
bounds. This fact has led some authors to suggest that a clas-
sical confidence interval can sometimes be given a Bayesian
interpretation (Gelman et al., 2013, sec. 4.5). Notice, how-
ever, that we would rarely want to give a Bayesian interval
a frequentist interpretation.
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Furthermore, under similar assumptions as given above,
the frequentist one-sided p value corresponds to Bayesian
posterior probabilities (that a parameter is greater or smal-
ler than a comparison value, such as zero; Marsman &
Wagenmakers 2016). However, the probability interpreta-
tion naturally afforded to the Bayesian quantity seems to
us to suggest its conceptual superiority, at least insofar
as its interpretation does not immediately invite a binary
significant-or-not attitude (Gelman et al., 2013, p. 95).
As a side note, the two-sided p value does not have a
straightforward Bayesian counterpart.

We are not the first to suggest the use of Bayesian meth-
ods in mediation analyses: Yuan and MacKinnon (2009)
discussed using it for single- and multi-level mediation
analyses, and provided copy-and-paste WinBUGS code for
conducting the analyses. Another paper discussed the use
and benefits of Bayesian methods in the specific context of
moderated mediation (Wang & Preacher, 2015). To further
these efforts, we provide a fully functional software package
for conducting Bayesian multi-level mediation analyses in
a common and free programming environment, using state-
of-the-art Bayesian estimation procedures, which we turn to
next.

MCMC and Stan The computer program we provide and
discuss below uses Markov chain Monte Carlo (MCMC)
procedures as implemented in the Stan? modeling soft-
ware (Stan Development Team. 2016b) to fit the multilevel
mediation model. MCMC is a class of computational pro-
cedures that allow approximating a probability distribution
by drawing random samples from it (for an excellent intro-
duction to MCMC, see van Ravenzwaaij, Cassey, & Brown,
2016). This technique is extremely valuable for Bayesian
inference, because complex multidimensional posterior dis-
tributions are often difficult or impossible to obtain with
analytic calculations.

Stan’s effective MCMC algorithms (No-U-Turn Sampler,
Hamiltonian Monte Carlo; Hoffman & Gelman, 2014) are
well suited for the problems presented in multilevel medi-
ation models, such as large numbers (potentially hundreds
or thousands) of parameters at multiple levels. Unlike early
popular MCMC algorithms that relied on Gibbs sampling
(BUGS, JAGS), Stan’s Hamiltonian Monte Carlo is very
effective even when the posterior distributions are highly
correlated, making it especially useful for path analyses—
such as mediation—and other more complex structural
models.

Furthermore, the Stan language allows placing priors
on correlation matrices and standard deviations, instead
of (co)variances, making (arguably) the prior specification
easier, as discussed next.

Zhttp://mc-stan.org/.

Prior distributions on parameters For Bayesian analysis,
all population-level parameters must also be assigned prior
distributions that represent the analyst’s state of knowledge
and uncertainty, before seeing the data. The priors depend
on the specifics of the data and context, and should be cho-
sen by the researcher—although the priors often have little
influence on the posterior distribution as the amount of data
increases. The software package we introduce below has
default values for the priors that we believe are reasonable,
minimally informative priors in most contexts.

For the regression parameters, the prior distributions are
zero-centered Gaussians, with user-defined standard devia-
tions (defaults to 1000). Effectively, a zero-centered Gaus-
sian with a small standard deviation “regularizes” (makes
large positive or negative parameter values less plausi-
ble, a priori) the estimated parameters, thereby improving
inference on average by preventing over-fitting (McElreath,
2016). A more technical definition of what constitutes a
“small” standard deviation depends on the theoretical con-
text and measurement scale, but for large amounts of data,
the values must be very small indeed to make a meaningful
difference in the posterior. The default value of 1000 will
have practically no impact on inference for data sets where
effects are on the range of z-scores. If greater effects are
plausible (say, a manipulation has an effect on the order of
thousands of milliseconds), users may increase the value.
The o = 1000 we have placed on the population-level
regression parameters considers values further away from
zero as increasingly unlikely, such that 95% of the a priori
most plausible values are between —1960 and 1960.

The second class of prior distributions relates to the vari-
ances and covariances of the subject-level effects. To allow
placing priors directly on standard deviations and correla-
tions, we construct the covariance matrix X from a vector
of standard deviations T and a correlation matrix €2 (Stan
Development Team. 2016b). We use folded Cauchy distri-
butions with user-defined scale parameters (defaults to 50)
for the subject-level effects’ standard deviations (Gelman,
2006; Gelman & Hill, 2007). The Cauchy distribution is
recommended for these parameters over alternatives, such
as inverse-gamma or uniform distributions, especially when
the number of clusters (subjects) is very small (Gelman,
2006). Specifically, the hyperparameters of inverse-gamma
prior distributions may be more difficult to specify when
minimally or non-informative priors are desired, and uni-
form prior distributions may lead to overestimation of .
The folded (positive-only) Cauchy distributions concern the
variability of the effects between subjects: The default scale
=50 implies that increasingly large values of variation (stan-
dard deviation of their respective Gaussian distributions)
between subjects are increasingly unlikely, such that a pri-
ori 50% of the most plausible values are under 50, and 95%
are under 1272.
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For the correlation matrix €2, we use an LKJ prior
with a user-defined shape parameter v (defaults to 1)
(Lewandowski, Kurowicka, & Joe, 2009; Stan Development
Team. 2016b). With older MCMC sampling programs rely-
ing on Gibbs sampling, such as BUGS and JAGS, it was
more convenient to use conjugate inverse Wishart distribu-
tions as priors on the covariance matrices. However, Stan
doesn’t require conjugacy for multivariate priors, and it is often
easier to think of plausible correlations rather than covariances,
and we therefore use the LKJ prior distribution on €2.

The default hyperparameter value for the LKJ prior (v
= 1) assigns equal plausibility across the range of possible
values (-1 to 1), and values of v greater than 1 increase the
a priori skepticism of large correlations ((McElreath, 2016),
p- 393). Because this distribution is relatively unknown
and difficult to conceptualize (it is a distribution of matri-
ces), Fig. 3 shows four sets of random draws from LKJ
distributions with different values of v (McElreath, 2016).

For general information on the choice of prior distri-
butions, we refer the readers to excellent textbooks on
Bayesian statistics (Gelman, 2006; Gelman et al., 2013;
Kruschke, 2014; McElreath, 2016). However, if users wish
to estimate models without prior information, they can spec-
ify very large standard deviations to the Gaussian prior
distributions and large scale parameters to the subject-level
effects’ standard deviations (Kruschke, 2014). Overall, we
chose default values for the prior distributions which would
have minimal impact on the resulting posterior distribu-
tions, given common ranges of data values and effect sizes.
The default priors are easy to change by simply passing
named arguments to the estimation function (as detailed
below).

Software package for Bayesian multilevel
mediation: bmlm

We developed a free open-source software package
(“pbmlm” for Bayesian Multi-Level Mediation) for the R
programming language (R Core Team, 2016) for easy esti-
mation, summarizing, and plotting the results of the multi-
level mediation model presented above (Vuorre, 2016). The
software can be installed from within the R environment
(source code, detailed installation and use instructions are
provided online at the package’s website https://github.com/
mvuorre/bmlm). To install the software package, please
ensure that you have the latest versions of R and Xcode
with command line tools (OS X users) or Rtools (Windows
users). Then run the following command in the R console
(the installation process may take a few minutes, because
the models are compiled to C++ during installation):

install.packages("bmlm")
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After the package has been installed, it must be loaded to
the current R workspace to make the functions contained in
it available to the user.

library (bmlm)

Next, we illustrate the functionality and use of bmlm with
an empirical example.

Example: Judgments of performance in a video
game task

In a series of experiments, Metcalfe and colleagues have
examined the informational bases of people’s judgments
of control; that is, to what extent various experimental
manipulations in a computer game task influence people’s
experiences of control (Metcalfe & Greene, 2007). In these
experiments, participants play an arcade style computer
game, in which they use the computer mouse to move a
game cursor (a light square) horizontally on the bottom of
the screen, while Xs and Os fall from top to bottom of
the screen. The objective of the game is to catch as many
falling Xs as possible, while avoiding all the falling Os.
After each game trial (about 20 s), the participants provide a
judgment of their experienced control using an analog slider
scale. These ratings have been found to be highly sensitive
to various manipulations of the game, such as artificially
introduced spatial and temporal discrepancies between the
mouse and square movements, and the speed of the falling
Xs and Os (Metcalfe, Eich, & Castel, 2010; Vuorre & Met-
calfe, 2016). Additionally, the participants have provided
Judgments of Performance (JoP), their subjective evalua-
tions of how well they did in the game on each trial, by using
an analog slider scale. Here, we focus on how these JoPs are
influenced by a specific experimental manipulation in this
computer game task.

One experiment introduced, on some trials, a small tem-
poral lag (250 ms) between the participant’s mouse move-
ments, and the movements of the game cursor on the screen
(Metcalfe et al., 2010, Experiment 1). This manipulation
led to a reliable decrement in the players’ ratings of perfor-
mance. In the analysis below we ask: “How does the tempo-
ral lag between one’s mouse movements, and the movements
of the game cursor, decrease ratings of performance?” To
answer this question, we propose a straightforward media-
tional explanation: The temporal lag decreases performance
(as measured by hit rate, the percentage of Xs caught in
a trial), and people’s Judgments of Performance depend
on their hit rates. In other words, we expect that hit rate
(performance) completely mediates temporal lag’s effect
on judgments of performance. This hypothesis implies that
people are making metacognitively accurate judgments of
performance, by basing their performance judgments on
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Fig. 3 Histograms of 100,000 random draws from the LKJ prior distribution for four values of v

an actual performance signal (hit rate), rather than, say, a
general feeling of abnormally delayed mouse control.

Data set

Multilevel models assume that the observed variables have
at least two potential levels of variation. Because temporal
lag was experimentally manipulated within subjects, it does
not vary between subjects. On the other hand, hit rates (HR)
vary both between and within participants: At the lower
(within-person) level, HR varies from trial to trial. At the
upper level, we may also expect that HR varies, on aver-
age, between participants. We are most interested in the
within-person process, and therefore it is useful to transform
the variables such that these two levels are explicitly sepa-
rated from each other (Bolger & Laurenceau, 2013). Notice
that this transformation is not strictly required, but this rea-
soning suggests that it is often useful and meaningful in
data sets where the predictor values vary both between and
within subjects. We first averaged the grand-mean-centered
trial-level HR for each person to create a between-person
component of HR. We subtracted these means from the raw HR
to create within-subject trial-by-trial deviations from the
subject-means that represent an entirely within-person ver-
sion of HR. Isolating the within-person process from vari-
ables can be done by using bmlm’s isolate () function:

MEC2010 <-isolate(d = MEC2010,
by = "subj",

value = "hr")

The isolate () function takes three arguments. On the
first row, we specify the data set to be MEC2010, which con-
tains data described in (Metcalfe et al., 2010) and is included
with the bmlm package. The next line specifies the column
containing values to isolate the within- and between-person
processes by (the subject numbers). Finally, the third line
identifies the variable to be isolated. After this transformation,
the example data frame is ready, and can be seen in Table 1.

Table 1 illustrates the structure and variables of the
example data set. Each participant (43 individuals) is
assigned a unique id number (subj); the two experimen-
tal conditions are represented by a dichotomous indica-
tor variable, where 1 indicates a lag trial (1lag); hr is
the raw percent of Xs caught in a trial; and jop is the
judgment of performance (from low [1] to high [100]).
Finally, hr_cw is the isolated within-subject component
of hit rate. All the variables must be numeric; if the
experiment contained two conditions, as in the example here,
the conditions would need to be dummy coded with inte-
gers. The data set contains eight observations per individual,
four in the lag condition, and four in a control condition.
Eight observations per person may seem a prohibitively small
sample, but because the multilevel model pools uncertainty
across subjects, we are able to estimate the within-subject
causal process with these data, as shown below.

Estimating the multilevel mediation model
with bmlm

To estimate the multilevel mediation model with bmlm,
users need to specify the data (an R data frame) in the cur-
rent R environment, and variables within the data frame
identifying individuals, and the X, M, and Y variables. Here,
MEC2010 is our data frame, subj the column identifying
individuals, and 1ag, hr_cw and jop the X, M, and Y vari-
ables, respectively. These variables are entered into a call to the
mlm () function, which estimates the model using Stan’s
MCMC algorithms (Stan Development Team. 2016b).

fit <- mlm(d = MEC2010,

id = "subj",
x = "lag",
m = "hr_cw",
y = "jop",

iter = 10000, cores = 4)
This function has two other important features, the con-

trol of prior distributions and various controls of the under-
lying Stan MCMC procedures. As is usual in R, more
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Table 2 Summary of results

Parameter Mean SE  Median 2.5% 97.5% n_eff  Rhat

a —35.53 1.27 -35.53 -38.00 —33.01 20,000 1.00
0.95 0.07 0.95 0.80 1.09 20,000 1.00

cp —-049 285 —-049 —6.09 5.16 20,000 1.00
me —33.70 2.88 —33.67 —39.50 -28.11 20,000 1.00
c —34.19 230 —-34.20 -38.70 —29.71 20,000 1.00
pme 0.99 0.08 0.99 0.83 1.16 20,000 1.00

Note. SE (for Standard Error) is the posterior standard deviation

information can be found by entering ?mlm in the R con-
sole. Although the software package sets default priors,
users may also input arguments identifying the prior param-
eters they would like to change (see the documentation
included with the software package, or the package’s web-
site, for details). Users may also control the behavior of the
underlying MCMC sampler; here, to ensure stable results
we increased the number of iterations from the default of
2000 to 10,000, and ran the program simultaneously on four
CPU cores.

Depending on the size of the data set and your com-
puter, the MCMC sampling may take from a few seconds to
several minutes. By default, m1m () runs 4 MCMC chains,
and uses the first half of each chain for warmup (Stan
Development Team. 2016b). The iter argument specifies
the total number of iterations per chain, so this example
results in 20,000 samples (4 x 10,000 / 2) from the model’s
posterior distribution. During and after sampling from the
posterior distribution, Stan will print progress information
in the R console. Occasionally, these prints may include
warnings about abnormal parameter values, but these are
usually not a cause for worry but simply a part of the random
MCMC sampling procedure. After the procedure ends, and
the model has been estimated (the desired number of poste-
rior samples have been obtained), the estimated parameters
can be summarized using bmlm’s functions.

Summarizing the multilevel mediation model

Population-level estimates We first focus on the
population-level parameters of the multilevel model. These
estimates describe the results of the mediation analy-
sis for the average person, and are often the parameters
of greatest interest. Users may print the model’s focal
estimated parameters directly to the R console by run-
ning mlm_summary (£it), where £it is the R object
containing the estimated model:

The output in Table 2 consists of the main population-
level parameters of the mediation model. The names cor-
respond to the parameters introduced in Figs. 1 and 2, and
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Eqgs. 2-8 (cp is ¢’, pme is proportion of effect that is medi-
ated [see below]). For each parameter, the output shows
the posterior mean, standard deviation (abbreviated SE for
standard error), and median (which may be a more repre-
sentative point estimate for skewed posterior distributions.)
“2.5%” and “97.5%” are the lower and upper limits of a 95%
Credible Interval, which is the central 95% of the corre-
sponding distribution. The limits of the CI can be controlled
by specifying the level argument of this function, e.g.
an 80% CI would be obtained with level = .8. n_eff
indicates the number of effective posterior samples, taking
into account the MCMC chains’ autocorrelation; this value
should be large to allow confident estimates of the quan-
tities. Finally, Rhat is the potential scale reduction factor,
and should be 1.00 for accurate estimates of the posterior
distribution (Gelman et al., 2013, pp. 285-288). If n_eff is
too small, or Rhat not 1.00, simply increase the number of
MCMC iterations and re-estimate the model using m1m() .
We recommend to increase the number of iterations until
Rhat is within .05 of 1, and although Gelman et al. (2013)
suggest that n_eff greater than 10 or 100 is acceptable, in
practice when extreme quantiles (such as 95% Cls) are of
interest, we recommend increasing iterations until n_eff >
100 (at least).

First, we interpret the total effect of temporal lag on judg-
ments of performance (c, Eq. 8). 95% of the most plausible
values of this parameter lie in the interval between -39 and
-30, and the mean value of the posterior distribution is -34.
Therefore, people gave about 34 points lower ratings of per-
formance (on a scale from 1 to 100) in the lag condition
versus the control condition, with 95% of the most plausible
values ranging from -39 to -30. Our mediation hypothesis
was that this effect would be mediated by hit rate. Therefore,
we next focus on the magnitude of the mediation effect,
the me parameter (Eq. 7). In support of our conjecture, me
appears very strong, and of approximately equal magnitude
to the total effect c. 95% of most plausible values of me lie

Hit Rate

/N

a=-36 b=0.95
[-38, -33] [0.8,1.1]
SD=16 SD=0.18

[0.062, 4.7] [0.021, 0.33]

/ N\

¢'=-049
[-6.1,5.2]
SD=4.4
[0.21, 1]

Lag JoP

Fig. 4 Path diagram with point estimates (posterior means) of the
parameters and associated 95 percent credible intervals (in square
brackets below the point estimates). Under each estimated average
effect, “SD” shows the associated effect’s standard deviation, which
indicates the degree to which that effect varies between people (in
standard deviation units)
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between -39 and -28, and the mean value is -34. Further,
after taking the hit rates into account, the direct effect of lag
is approximately zero and has a narrow credibility interval
(cp =-0.49,95% CI [-6.09, 5.16]), indicating that the lag —
JoP relationship is completely mediated by hit rate (Fig. 4).

Multilevel models also naturally estimate the between-
subject variability around the population-level estimates,
and the covariance of the subject-level parameters (i.e.,
the so-called random effects). The variability is captured in
the standard deviations of the subject-level effects (see eqn.
6 and Prior distributions on parameters above). These
estimates are useful summaries of the heterogeneity and
covariance of effects, and can be obtained from the model by
calling mlm_summary (fit, pars="random").

For instance, tau_a in Table 3 is the estimated standard
deviation of the lag — hit rate relationship in the popula-
tion. Because posterior distributions of standard deviations
tend to be non-normal, instead of a point estimate (the pos-
terior mean or median) we focus on the 95% CI: 95% of the
most plausible values of tau_a are between 0.06 and 4.74. In
context of an a effect of -35, the between-subject variation
of this effect is very small. To obtain summaries of other
parameters in the model, such as subject-specific effects,
users need to enter the names of the parameters to the pars
argument of mlm_summary ().

Visualizing the estimated parameters

bmlm offers quick access to summary plots from esti-
mated models. To draw a path diagram with the variable
names, and estimated path parameters as means and X% Cls
(default 95%), use mlm_path_plot ().

mlm_path_plot(fit, xlab = "Lag", mlab = "Hit Rate", ylab = "JoP")

Second, although the path plot affords a rapid visual dis-
play of the main conclusions of the model, it is often more
informative to plot the parameters themselves. bmlm offers
three default plots of the parameters, illustrated below. To
access these figures, use the mlm pars_plot () func-
tion. This function draws histograms, violin plots, or point

Table 3 Standard deviations of the regression parameters, and their
covariance (and correlation)

Parameter Mean SE  Median 2.5% 97.5% n_eff Rhat
tau_a 1.61 1.26 1.34 0.06 4.74 6,877 1.00
tau_b 0.18 0.08 0.19 0.02 033 3,197 1.00
tau_cp 437 290 4.01 0.21 10.62 5,441 1.00
covab -0.07 0.17 —-0.02 —-0.52 0.18 10,288 1.00
corrab —-0.15 040 -0.18 —0.81 0.66 20,000 1.00

estimates with CIs, of the estimated parameters. The type
of the plot can be specified by setting the type = X
argument to this function call, where X is either "hist™"
(Fig. 5), “violin” (Fig. 6), or “coef” (Fig. 7).

mlm_pars_plot(fit,
type = "hist",
pars = c("tau_a", "tau_b", "covab"), # Which parameters

nrow = 1) # Number of rows for multiple histograms

We prefer displaying the main parameters of interest as
“violin” plots (also known as “cat’s eye” plots, Fig. 6).
These offer a view of the distributions such that the width
of the shape is proportional to the frequency of those values.
In other words, the “violins” are filled density curved turned
sideways and mirrored. The violin shapes in Fig. 6 illustrate
that the most plausible values of cp (population-level direct
effect of lag on JoPs), for example, are found near zero, and
offer a visual depiction of the relative credibility (width of
violin) of the parameter values (y axis). The extremely thin
tails of c¢p beyond about £5 indicate that these values are
implausible. The code snippet below also illustrates that the
object returned by mlm_pars_plot () is a ggplot2 object,
and can be further customized by functions in the ggplot2
R package (Wickham, 2016). Here, we specify the y axis
breaks to run from -50 to 10 in increments of five.

mlm_pars_plot(fit,
type = "violin",
"me")) +

pars = c("a", "cp", "c",

scale_y_continuous(breaks = seq(-50, 10, 5))

Unlike more familiar point-and-error-bar representations
of uncertainty, violin plots put visual emphasis on the rela-
tive plausibility of values within the distribution itself, and
may therefore allow a more efficient display of information.

Subject-level estimates The multilevel model provides, for
each person, their own mediation model with empirical
Bayes estimates of the parameters. Numerical represen-
tations of these values would quickly overwhelm us, but
a graphical representation of the subject-level parameter
values offers valuable insight about the between-subject
variability in the estimated effects. For example, the subject-
specific values of me show relatively little variation, and
indicate that the mediation effect is present for each indi-
vidual person. To obtain subject-specific parameters, simply
call the function with the parameter name prepended with
“u_”. (We again specify the y axis breaks as in the Fig. 6.)

mlm_pars_plot(fit,
type = "coef",
pars = c("u_me", "me"),
level = .80) +

scale_y_continuous(breaks = seq(-50, 10, 5))
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tau_a

tau_b covab

5 10000
Fig. 5 Histograms of the marginal posterior distributions of the stan-

dard deviations of a and b (left, middle), and the a-b covariance (right).
Quick visual inspection tells us that these distributions are unlikely to

Figure 7 displays the subject-level (black) and
population-level (red) estimates of me, the mediation effect,
and shows that while there is some variation in the subject-
specific effects, there appears to be a strong mediation
effect (indirect effect) for every person.

Mediation with binary outcomes

Binary outcomes are common in cognitive psychology,
such as in learning and memory experiments where the Y
variable may be a binary indicator for a correct/incorrect
or remembered/not remembered response. bmlm allows
estimating the multilevel mediation model with binary
outcomes, and assumes that the outcome variable is coded
as O0s and 1s.

To illustrate how to estimate the model with a binary out-
come variable, we created a binary (0/1) outcome variable

10 1
5 -
0 Y\ .
-5

-10 -

-15-

-20 -

25

-30-

_35 - ¢
_40 .

_45 .

a cp c me

Fig. 6 Violin plots of the estimated parameters. Each dark violin
shape is a mirrored top-down view of a density plot
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be Gaussian, and therefore using the distributions’ means or standard
deviations as numerical summaries may be misleading. It is better to
interpret the entire distribution

05 -2 -

in the current example data by within-person-median split-
ting the original outcome variable (Table 4). Some authors
also recommend standardizing the M variable (MacKinnon
and Dwyer, 1993; Winship & Mare, 1983), but we omit
standardizing M here for simplicity.

Because Y is now binary, we must specify binary.y =
TRUE when using m1m () to estimate the model. We also
take the opportunity here to illustrate how to adjust the prior
scale parameters when estimating the model. We assign the
b parameter’s Gaussian prior distribution’s SD to 1. This
(somewhat arbitrary) prior assumption means that our prior
knowledge about b is described by a Gaussian distribution
centered on zero with a standard deviation of 1. For exam-
ple, if the estimated parameter was exactly 1, then the effect
of one unit of hr_cw on the log-odds of jop bin was 1;
a rather implausibly large effect. In effect, this prior then a

Fig. 7 Coefficient plot of the person-level estimates of the mediation
effect. Each square represents the mean of an individual’s estimated ab
parameter, and the lines cover the 80% CI of the parameters. By adjust-
ing the “pars” argument, we also include the average level estimate,
which is automatically displayed in red
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Table 4 Example data with a binary Y variable

subj lag hr jop hr_cw jop-bin
1 1 36.67 30 —23.33 0
1 1 50.00 80 —10.00 1
1 0 56.67 90 —3.33 1
1 1 56.67 32 —3.33 0
1 1 56.67 50 —3.33 0
1 0 70.00 76 10.00 1

Note. jop-bin is a within-person median split version of the original
jop variable

priori constrains plausible parameter values to be closer to
zero as described by the N (0, 1) distribution.

fit_bin <- mlm(d = MEC2010,

id = "subj",

x = "lag",

m = "hr_c

y = "jop_bin",

binary_y = TRUE,

priors = list(b = 1),
cores = 4)

The estimated model is now in an R object called
fit_bin. All the summarizing and plotting functions illus-
trated above can be used with the binary Y model as well.
However, all the model’s coefficients that refer to Y are in
log-odds, or transformations including a log-odds unit (such
as the mediation effect, which is a product of a linear regres-
sion coefficient (path @), and a log-odds coefficient (path b).
These values are usually difficult to interpret, and we there-
fore recommend users to visualize the fitted values of the
model.

Visualizing the model’s fitted values

A helpful function for visualizing the fitted values
is mlm_spaghetti plot (), which is used to draw
“spaghetti” plots that show fitted values at the population-
and subject-levels. Spaghetti plots make the relationships
between the variables particularly salient, by plotting the
model’s fitted values in the data space (i.e., the b path is
plotted in probability space). We illustrate how to use this
function below:

mlm_spaghetti_plot(
mod = fit_bin,
d = MEC2010,
x = "lag", m = "hr_cw"

, y = "jop_bin", id = "subj",

fixed = TRUE, random = FALSE, binary_y = TRUE, n = 20)

The input arguments to mlm_spaghetti_plot () are
the model (mod), the data frame used to fit the model (d),
and the X, M, Y, and id variable names (as they are in the
data). Further arguments allow the user to decide to visu-
alize the population-level effects (£ ixed), subject-specific
effects (random), or both. Finally, we also specified that
the model has a binary outcome variable binary.y =
TRUE, and ensured that the lines look smooth by specifying
that the fitted lines should be evaluated along 20 points on
the x-axis (n = 20).

The resulting figure (Fig. 8) is especially useful for
understanding the model when Y is binary, because the
estimated parameters referring to Y are in log-odds, and
the mediation effect is a product of a linear coefficient
and a log-odds coefficient. This visualization is directly
interpretable because the slope of the b path is shown in
probability space, and visualized such that the x-axis values
are the fitted values of M from the a path regression, and
thus carry the effect size of the a path to plausible effects of
the b path. Finally, the gray shades surrounding the regres-
sion lines in both panels of the figure are by default 95%
Credibility Intervals, but the percentage can be adjusted
with the 1evel argument of mlm_spaghetti plot ().

The same function can also be used to display regres-
sion lines of the a and b paths for every individual in
the study by setting the function’s argument random =
TRUE. Figure 9 shows the resulting “spaghetti” plot. These
figures are especially helpful in illustrating the heterogene-
ity of effects among participants, which in this study was
very small.

Estimating the magnitude of mediation

While me and ¢’ together provide information on the mag-
nitude of the population-level mediation and direct effects,
respectively, another approach to assessing the magnitude
of mediation is to calculate the proportion of the total effect
that is mediated, % (MacKinnon et al., 2007; MacKinnon,
Warsi, & Dwyer, 1995; Shrout & Bolger, 2002).

Because the Bayesian framework provides a full multi-
variate posterior distribution, obtaining the posterior distri-
bution of %= is straightforward. This quantity is saved in
the estimated model as pme, for proportion mediation effect
(or “proportion of effect that is mediated”). The resulting
marginal posterior distribution from the current example
is illustrated in Fig. 10. It is important to note that inter-
preting pme is straightforward only if the mediated and
direct effects are of the same sign (Shrout & Bolger, 2002).
For this, and other reasons, estimated values of pme may
exceed 1 or be negative, and therefore do not represent a
true proportion. We recommend interpreting values greater
than 1 as 1. Although the usefulness of this metric can be
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Fig. 8 Fitted values of the multilevel mediation model with a binary Y. Left panel: Population-level regression line for path a and its 95%CI as a
grey shade. Right panel: Population level regression line for path b in probability space, and its 95%CI

disputed because it does not represent a true proportion, it
can sometimes be useful—especially as a quick and rough
estimate of the importance of the mediated effect—and we
include it in the model’s output, but remind researchers to
be cautious when interpreting it. Keeping this in mind, the
posterior distribution of pme in Fig. 10 suggests that most
plausible values are very close to 1, again reinforcing our
conclusion of total mediation of lag’s effect on judgments
of performance through hit rates.

Other effect size measures for mediated effects have also
been proposed, such as «2, which is a standardized effect
size denoting the “proportion of the maximum possible indi-
rect effect that could have occurred, had the constituent
effects been as large as the design and data permitted”
((Preacher & Kelley, 2011), p. 106). However, the useful-
ness and definition of the x> metric has been contested for a
number of reasons, including that it can decrease even though
the underlying mediation effect increases (Wen & Fan, 2015).

Furthermore, non-standardized effect sizes are often eas-
ier to interpret, and as such can be more informative
about the measures used in the experiment (Baguley, 2009).
Therefore, we recommend describing the results of multilevel
mediation analyses using unstandardized effect sizes such
as the coefficients a, b, ¢’, and their transformations such as

-20 1

0.00 0.25 0.50 0.75 1.00
lag

me. This recommendation echoes Tukey’s note that “being
so disinterested in our variables that we do not care about
their units can hardly be desirable.” ((Tukey, 1969), p. 89).

In the case of a binary Y variable, the regression coef-
ficients b and ¢’ are more difficult to interpret directly,
because they report unstandardized effect sizes in the log-
odds scale. Consequently, the mediated effect me is a prod-
uct of a linear effect on the data scale (a), and a linear
effect on the log-odds scale (b). However, this complica-
tion reflects the fact that mediation effects are inherently
combinations of many variables, and there may not be a sin-
gle metric that adequately captures the mediation effect size
in all situations (Wen & Fan, 2015).

Consequently, we recommend reporting not only the
mediated effect me, but its constituent parts a and b as well
(and covariance Oajbjs if it is important in the current analy-
sis). If the a and b paths are of the same sign, the proportion
of the total effect that is mediated, %, should also be
reported. Because the Bayesian analysis automatically pro-
vides posterior distributions of these parameters, inference
(and communication) should not focus on point estimates,
but their associated uncertainty intervals should also be
reported. Additionally, the communication and interpretation of
mediation analyses is greatly facilitated by graphical

1.001

0.751

0.25 1

0.00
-20 -10 0 10
hr_cw

Fig. 9 Fitted values of the multilevel mediation model with a binary Y, for every individual in the study. Left panel: Subject-specific regression
lines for path a. Right panel: Subject-specific fitted values for path b in probability space
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Fig. 10 MCMC samples from the posterior distribution of the
population-level proportion of effect that is mediated

descriptions of the data and estimated model, such as Figs. 8
and 9. We have specifically designed bmlm’s plotting func-
tions to facilitate the interpretation and communication of
results.

Summary of bmlm’s functions

Above, we have illustrated the functionality of bmlm with
an empirical example. Table 5 provides a quick reference
table to its main functions.

Discussion
Comparison to other software

Software options for implementing multilevel mediation are
limited, and to date have been limited to commercial soft-
ware. Bolger and Laurenceau (2013) used Mplus (Muthén
& Muthén, 2017) to estimate a 1 — 1 — 1 multilevel medi-
ation with continuous Y, and here we provide a summary
table comparing estimated parameters from bmlm and

Table 5 Main functions of bmlm

Mplus for the example discussed in Bolger and Laurenceau
(2013). (This data set is included in bmlm as BL.ch9.)

Table 6 shows that the point estimates, and their standard
errors (for bmlm these are posterior means and standard
deviations), obtained from bmlm and Mplus are in agree-
ment, and numerical differences are small. However, it is
important to emphasize that only focusing on the point
estimate and SE of some of the estimated parameters can
be less informative than viewing the full posterior distri-
bution, because the shape of the distribution can be very
non-Gaussian, in which case these two numbers may be
misleading. For example, Fig. 5 shows that the posterior
distributions of standard deviation and covariance parame-
ters characterizing the random effects may be very skewed;
summarizing these with just a mean and SD may lead to
inaccurate inferences. In summary, numerical results from
bmlm are the same as would be obtained using commercial
software (Mplus).

Why, then, should researchers choose to use bmlm over
the more general Mplus software? First, on our reading, the
Mplus software—and its modeling language—is not well
known or commonly used within cognitive psychology and
neuroscience. The R software is well known within these
fields, and because at its core bmlm is only a library of R
functions, users who are familiar with R can estimate the
model within minutes of installation. A second benefit of
using the comparably more limited bmlm has to do with
the fact that it is emphatically not a general purpose (struc-
tural equation) modeling tool; it does few things, but it does
them well. For example, the figures illustrated above are
very useful in interpreting and communicating results from
the analysis, and are available to users by simply using their
associated functions. Because Mplus is a general-purpose
modeling tool, it does not easily provide these types of
figures for specific purposes, such as detailed here.

The two most important reasons for using bmlm over
its commercial alternatives, such as Mplus, however, are
openness and price. Regarding the former, there has
recently been an enormous push toward increasing scientific

Function Purpose Inputs
isolate() Create within-person variables Data, variable names
mlm() Estimate a multilevel model Data, variable names, MCMC options

mlm_summary()
mlm_pars_plot()
mlm_path_plot()
mlm_spaghetti_plot()
tab2doc()

Print parameters to R console

Plot mediation model’s parameters
Plot the model as a path diagram
Plot fitted values (regression line)
Create a Word summary document

Model, parameters, credibility level
Model, plot type, parameters
Model, variable names

Model, data, variable names
Results of mlm_summary()

Note. To learn more about each function, type the function’s name prepended with a question mark in the R console. This will bring out the

function’s help page
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Table 6 Comparison of parameters estimated with bmlm and Mplus,
from a model using example data presented in Bolger and Laurenceau

(2013), chapter 9. The bmlm estimates are posterior means, and SEs
are posterior standard deviations (based on 100,000 MCMC samples)

Parameter Estimate (bmlm) Estimate (Mplus) SE (bmlm) SE (Mplus)
a 0.19 0.19 0.04 0.04
0.15 0.15 0.03 0.03
cp 0.10 0.10 0.02 0.02
c 0.16 0.16 0.03 0.03
me 0.06 0.06 0.01 0.01
pme 0.36 0.36 0.08 0.08
covab 0.03 0.03 0.01 0.01
tau_a 0.26 0.26 0.04 NA
tau_b 0.22 0.21 0.03 NA
tau_cp 0.08 0.09 0.03 NA
sigma.y 0.93 0.92 0.02 NA
sigma_m 1.09 1.09 0.02 NA

Note. The variance components’ SEs are missing from the Mplus results because they were reported in the variance scale in Bolger and Laurenceau

(2013), and therefore not directly comparable to the current results.

reproducibility, openness, and transparency (e.g., Eglen
et al., 2017; Munafo et al., 2017; Vuorre & Curley, 2017).
Because the source code of our program is freely available,
it is easily accessible to public scrutiny, improvement and
communication, thereby potentially increasing the afore-
mentioned goals. Second, providing the package within the
R ecosystem makes literate programming (Knuth, 1984)
more accessible than standalone programs, thereby possibly
improving reproducibility (literate programming is the com-
bining of computer code and language to enhance technical
communication). Finally, perhaps the most import differ-
ence between bmlm and its commercial alternatives, such
as Mplus, is that our program and code is free to use,
modify and extend. For many researchers, software licenses
can be too expensive, but free programs don’t require re-
allocation of research funds toward programs, and thereby
make these useful methods available to a broader audience
of researchers.

Limitations

Currently, bmlm’s implementation of multilevel mediation
requires that the data set be submitted to the analysis with
complete rows. That is, missing cells within rows are not
allowed, and users are required to either drop all rows of
data that are not complete, or fill the data before entering
it to the m1m () function. However, the software does not
require that the data set is balanced either across individuals
or across conditions within individuals. We believe that not
allowing missing values is not a great limitation, because in
cognitive experiments data is usually collected with a com-
puterized experiment, making missing rows (e.g., outliers

@ Springer

for M or Y leading to the entire trial being rejected from
analysis; allowed) much more common than missing values
(e.g., value for a single variable not logged for one trial; not
allowed.)

Another limitation of bmlm is that it currently imple-
ments only the 1 — 1 — 1 mediation model (with contin-
uous/binary Y), and more complex mediation models are
not allowed. Furthermore, issues such as covariates and
latent variables (e.g., Cheong et al., 2003) are often dis-
cussed in the literature on mediation, possibly making the
model presented here seem as limited in scope. However,
latent variables, longitudinal models, and covariates are not
widely applicable in experimental studies in cognitive psy-
chology and neuroscience: While future work might address
these issues, we feel that this relatively simple model is
widely (and easily) applicable to a wide range of data within
these fields. Furthermore, the model’s Stan source code is
extensively commented and modular, thus making it eas-
ier for experienced users to expand it to more complex
models. We plan to implement some common but more
complicated models in the software in our future work, but
believe that the models currently provided cover a large
number of common use cases in cognitive psychology and
neuroscience.

Considerations for analyzing causal models

We also remind readers of the general limitations and
pitfalls of analyzing causal models with statistical media-
tion, and the additional complications related to allowing
the hypothesized causal effects to vary randomly between
individuals. One of the primary benefits of controlled
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experiments is that hypothesized causal variables (X) are
manipulated, and the causal assumptions are therefore eas-
ier to accept. With mediation models, the situation is more
complicated because the mediating variable (M) is thought
to exert a causal influence on Y, yet it is not experimentally
manipulated.

Ultimately, to adjudicate causation from correlation
in the M-Y relationship, strong theoretical, logical, and
experimental considerations need to be taken into account.
For instance, it is important to ensure that the temporal
sequence of X, M, and Y within an experimental trial sup-
ports causation from M to Y and not vice versa. In the
example presented above, we can fairly certainly assume
that the actual game performance during a trial (hit rate)
occurred and was determined before the subject’s judgment
of performance (JoP) at the end of the trial. Another impor-
tant consideration is that there should be no other mediator,
correlated with the proposed M, that would instead explain
the mediated effect.

A second issue with statistical mediation, and any regres-
sion method, is that measured variables are assumed to
be measured without error. If M is a very noisy mea-
sure of the underlying construct, its association to Y may
be very difficult to find, or the relationship may be oth-
erwise unrepresentative of the relationship between the
actual construct that M represents and Y. Although out-
side the scope of this article, Bayesian methods allow
relatively straightforward relaxation of this assumption:
If researchers have information about the measurement
error associated with a variable, they can include it in
the model. This approach is used, for example, in the
Bayesian regression R package brms (Biirkner, 2017).
Because M is measured, the assumption of no measurement
error is often more difficult to satisfy in mediation mod-
els than in models where all predictors are experimentally
manipulated.

Finally, the multilevel model allows all parameters to
vary between subjects. It is therefore possible that while
the population level estimated parameter might indicate a
mediated effect for the average person, the subject-specific
effects might indicate that the effect is very weak—or might
be in the other direction—for a subset of individuals. In
these cases, some researchers might object to the assertion
that the mediation effect holds in the population. How-
ever, we think that significant between-subject variance is a
source of inspiration for future research. We also note that
the important issue of between-person heterogeneity is not
specific to multilevel mediation, but applies to all research
and analyses where effects can vary between individuals.
Multilevel models are useful-among other reasons—because
they bring this heterogeneity to researchers’ attention,
and possibly deepen their understanding of the research
question.

Software dependencies and development

At its core, bmlm uses the Stan programming language
through the rstan R interface for estimating the mediation
model (Stan Development Team. 2016a, b). After estimat-
ing the model, users may export the underlying Stan code
(run cat (rstan::get_stancode (fit)) in R) and
use it to extend the mediation model to answer more com-
plex questions. bmlm’s core functions also depend on the
R packages dplyr (Wickham & Francois, 2016) and Rcpp
(Eddelbuettel & Francois, 2011). bmlm’s plotting functions
depend on R packages ggplot2 (Wickham, 2016) and qgraph
(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012). Situating bmlm in the R ecosystem also makes it
easy for users to write reproducible reports and manuscripts
using the R packages knitr (Xie et al., 2016), R Markdown
(Allaire et al., 2016), and papaja (Aust & Barth, 2016).
Users may also use the tab2doc () function to directly
export bmlm’s results to a Word table (Gohel, 2016).

For more extensive user instructions, we direct users to
the package’s website.® For comments and feedback, such
as suggestions of new features, users may visit the pack-
age’s GitHub website and leave a request for a new feature.
This website also allows more advanced users to copy the
package’s source code for extending its functionality.

Conclusions

Statistical mediation allows researchers to address ques-
tions about causal mechanisms in which the effect of one
variable on another is mediated by a third variable. Such
research questions about causal relations are commonplace
and important in psychological science, but to date have
most commonly concerned between-person causal relations.
The analysis of mediation at the within-person level is rela-
tively uncommon and presents additional complexities, but
comes with great benefits: When individual participants
provide multiple measures of the IV, DV, and mediating
variable, mediation can be assessed for each individual and
the population average, and the inference to within-person
psychological processes is more straightforward. Addition-
ally, multilevel mediation analysis provides estimates of the
between-person variability (heterogeneity) in the effects,
which are important when considering the generalizability
of the observed effects (Bolger & Laurenceau, 2013).

Here, we discussed the multilevel modeling approach to
investigating within-person mediation (Kenny et al., 1998,
2003), and introduced a free, open-source software pack-
age for the R programming environment for conducting
Bayesian multilevel mediation analyses (bmlm; Vuorre,

3https://mvuorre.github.io/bmlmy/.
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2016). This software package allows users to easily estimate
multilevel mediation models, and summarize and visual-
ize its results. The software package is freely available at
https://cran.r-project.org/package=bmlim.
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